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Abstract
In geometrically nonlinear theories of inelasticity of solids, the deformation gradient is typically split multiplicatively into
two (or more terms), none of which need be integrable to a motion or displacement field. Such terms, when not
integrable, are termed anholonomic, and can be associated with intermediate configuration(s) of a deformed material
element. In this work, aspects of tensor calculus associated with anholonomic deformation are analyzed in general
curvilinear coordinates. Various linear connection coefficients for intermediate configurations are posited or derived;
of particular interest are those mapped coefficients corresponding to the choice of identical basis vectors in multiple
configurations. It is shown that torsion and curvature associated with such mapped coefficients do not necessarily
vanish, even though torsion and curvature tensors of the original connections vanish by definition in reference or
current configurations. Intermediate connection coefficients defined in this way exhibit vanishing covariant derivatives
of corresponding metric tensors, but are time dependent even when reference (current) configuration connections are
fixed in time at a given material (spatial) location. Formulae are derived for total covariant derivatives of two- and three-
point tensors with one or more components referred to the intermediate configuration. It is shown that in intermediate
coordinates, neither the divergence of the curl of a vector field nor the curl of the gradient of a scalar field need always
vanish. The balance of linear momentum for a hyperelastic–plastic material is examined in the context of curvilinear
intermediate coordinates.

Keywords
anholonomic deformation, curvature, differential geometry, finite strain, multiplicative decomposition, torsion

1. Introduction
The notion of a locally relaxed or stress-free intermediate configuration is widely used in geometrically non-
linear (i.e. finite deformation) models of solids. An intermediate state in which deformations of neighboring
material elements may be incompatible was proposed for anelastic materials [1]. A multiplicative decomposi-
tion of the deformation gradient into elastic and plastic parts was developed for crystalline solids containing
continuous distributions of dislocations [2, 3]. The torsion tensor constructed from gradients of elastic or plastic
deformations can be associated with the density of dislocations [3–5]. Shortly thereafter, theories of continu-
ous bodies with inhomogeneities, in which various non-integrable deformation mappings are introduced, were
developed [6, 7]. Subsequent literature on nonlinear kinematics of crystals with defect distributions is immense;
relevant more recent works include [8–14].
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The multiplicative decomposition of the deformation gradient for crystals deforming via dislocation-
mediated plasticity has been extended to describe kinematics of a number of other physical phenomena. For
example, such decompositions have been used to describe thermal expansion/contraction [15], growth mechan-
ics in biological tissues [16], volume changes associated with point defects [10, 17] and voids [18], deformation
twinning [19, 20], and disclination defects [21, 22]. Theories of inhomogeneous bodies have been applied to
describe solid and fluid crystals and laminated composite materials [7, 23] in addition to isotropic solids and
anisotropic solid crystals. Extensions of the multiplicative decomposition to three (or more) terms have been
used to quantify elastic–plastic phenomena at different length scales [24]. Reviews with more comprehensive
lists of references are available elsewhere [14, 25]. It should be noted that theories for nonlinear material behav-
ior in the context of defective crystals [8] and biological systems [26] have been developed that do not require
explicit use of a multiplicative decomposition.

In the present work, the total deformation gradient F is decomposed as F = F̄F̃, where F̃ and F̄ are generic
two-point mappings from the reference to intermediate configuration and intermediate to current configuration,
respectively. In coordinates, Fa

�A = ∂ϕa/∂X A is the tangent map from the reference to current configuration,
where spatial coordinates xa = ϕa(X , t) follow the motion ϕ that may depend on time t and material particle
X . Deformation gradient F is said to be integrable or ‘holonomic’ since the differentiable one-to-one mapping
ϕ(X , t) exists between referential and spatial positions of material particles. On the other hand, F̃α

�A(X , t) and
F̄−1α

�a(x, t) need not be integrable functions of X A and xa, respectively; in such cases, these mappings are said
to be ‘anholonomic’ [5, 14, 27, 28]. Correspondingly, when F̃ (F̄−1) is not integrable, coordinates x̃α that are
differentiable one-to-one functions of X A (xa) do not exist, and the intermediate configuration is said to be an
anholonomic space.

According to Schouten [27], the study of differential geometry of anholonomic spaces was initiated by
Vranceanu [29]. General mathematical identities are derived or listed in [27]; anholonomic coordinate transfor-
mations are also mentioned by Ericksen [30, p. 801] in the context of tensor fields in mechanics. Applications
of anholonomic geometry to plasticity theory are described by Kondo [5, 31].

In a previous work co-authored by the present author [28], several different metric tensors on the intermediate
configuration were discussed. Of particular interest in that work was a metric tensor formed from the scalar
product of spatial basis vectors convected to the intermediate configuration using the elastic distortion. This
metric, which corresponds to the right Cauchy–Green deformation tensor formed from the elastic deformation
gradient, demonstrates a non-vanishing curvature tensor associated with incompatibilty or anholonomicity of
the intermediate configuration, and proves useful in formulating scalar energy potentials for crystalline solids
with continuous distributions of dislocations [14, 28]. In that work [28], the same notation was used for different
sets of anholonomic and convected basis vectors; the present work corrects this ambiguous notation.

The usual choice of basis vectors in the intermediate configuration is a Cartesian system with metric ten-
sor components equivalent to Kronecker’s delta symbols. In theories of crystal elasto-plasticity, coincident
Cartesian coordinates are almost universally used for every configuration of a material body. Cartesian coordi-
nates prove especially convenient for representing anisotropic elastic and plastic behavior of single crystals, for
which elastic moduli and slip system geometry are most easily described using Cartesian frames of reference
[14, 25, 32, 33]. Teodosiu [34] suggested an intermediate coordinate system wherein an orthonormal director
triad is attached to each locally relaxed material point, but triads at different material points can differ by a
finite rotation; the field of such rotations presumably may be discontinuous in material coordinates. In such a
representation, the metric tensor also reduces to Kronecker’s delta, and it was assumed that connection coeffi-
cients associated with covariant differentiation in the (possibly anholonomic) intermediate configuration vanish
identically [34].

Of particular interest in the present paper are general curvilinear coordinates in the intermediate configu-
ration. Curvilinear coordinates such as cylindrical or spherical systems are useful for describing bodies whose
shapes are naturally extrinsically or intrinsically curved, e.g. cylinders, spheres, and shells of various kinds.
Such shapes arise frequently in biological systems. Furthermore, certain crystalline structures may be amenable
to description with curvilinear coordinates; for example screw dislocations perpendicular to the basal plane
in crystals with hexagonal symmetry (with second-order elastic constants having transverse isotropy) may be
described using cylindrical coordinates [35]. In such situations, it is natural for one to use the same system of
coordinates in all configurations if the shape of the body remains roughly the same during deformation. For
example, if the body remains cylindrical throughout the deformation process, the natural choice of coordinates
would be cylindrical coordinates in reference, intermediate, and current configurations. Simo [36] developed a
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finite elastic–plastic theory wherein the same metric tensor and presumably the same coordinate system, which
may generally be curvilinear, are used for both reference and intermediate configurations. The present author
[14, p. 91] suggested that two pragmatic choices for intermediate coordinate systems are either this prescrip-
tion [36] or the prescription of the same, possibly curvilinear, coordinate system in intermediate and spatial
configurations.

The present paper supplements, refines, and substantially extends a previous treatment of anholonomic
geometry in the context of solid mechanics (in particular, brief sections 2.8 and 3.2.3 of [14]). Choices of
coordinate systems (i.e. basis vectors) in the potentially anholonomic intermediate configuration are critically
examined. Metric tensors, connection coefficients, torsion, and curvature are derived for each choice of basis.

As shown for what appears to be the first time in this paper, the choice of such mapped intermediate
coordinate systems from curvilinear referential or spatial coordinate systems [14, 36] leads to intermediate
basis vectors whose derived connection coefficients may be non-symmetric in covariant indices and may have
non-vanishing torsion and curvature. It is also shown that torsion and curvature may be non-zero even if the
intermediate configuration is holonomic. Upon development of logical definitions for partial and covariant dif-
ferentiation with respect to possibly anholonomic intermediate coordinates, it is shown that the divergence of
the curl of a vector field and the curl of the gradient of a scalar field need not necessarily vanish in the interme-
diate configuration. Piola’s identity for the Jacobian determinant [14, 37, 38] also does not generally apply in
the intermediate configuration. Formulae are derived for total covariant derivatives [30, 39] of two- and three-
point tensors with one or more components referred to the intermediate configuration. It is shown by example
that such formulae are needed when writing the balance of linear momentum for nonlinear hyperelastic–plastic
solids in general curvilinear coordinates.

Much of this paper is tutorial in nature (e.g. the content of Section 2 can be found in books on nonlin-
ear continuum mechanics and elasticity in curvilinear coordinates); however, in addition to serving as a useful
reference, such content is needed to develop and contrast results in subsequent sections. As mentioned in the
preceding paragraph, the present work contains apparently new results pertaining to particular choices of inter-
mediate coordinate systems that are not explicitly evident in other relevant works incorporating direct (i.e.
coordinate-free) notation [6, 40].

This article is organized as follows. Definitions and notation for geometry and kinematics of holonomic
(i.e. integrable) deformation gradients are given in Section 2. Kinematics and geometry of anholonomic defor-
mation are described in Section 3, including integrability conditions, choices of coordinate systems, rules for
partial and covariant differentiation, and important derived identities. The local balance of linear momentum in
geometrically nonlinear continuum mechanics is examined in Section 4 in the context of possibly curvilinear
intermediate coordinate systems. Conclusions follow in Section 5, while an Appendix contains explicit forms
of intermediate connection coefficients and curvature for cylindrical coordinates. Notation of nonlinear contin-
uum mechanics [14, 38, 39] is used. Einstein’s summation convention applies over repeated indices. Uppercase
Roman font is used for indices corresponding to referential (i.e. material) coordinates, lowercase Roman font
for current (i.e., spatial) coordinates, and lowercase Greek font for intermediate (and possibly anholonomic)
coordinates.

2. Holonomic deformation

2.1. Configurations, coordinates, and metrics

A material point or particle in reference configuration B0 is labeled X . The corresponding point in the current
or spatial configuration B is labeled x. Time is denoted by t. The motion and its inverse, respectively, are

xa = ϕa(X , t) = xa(X , t), X A = �A(x, t) = X A(x, t). (1)

Unless noted otherwise, spatial coordinates xa and reference coordinates X A are assumed sufficiently differen-
tiable functions of their arguments. Partial differentiation is written alternatively as follows:

∂(·)
∂X A

= ∂A(·) = (·),A,
∂(·)
∂xa

= ∂a(·) = (·),a. (2)

The following identities are used frequently:

∂A[∂B(·)] = ∂B[∂A(·)], ∂a[∂b(·)] = ∂b[∂a(·)]. (3)
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Let X ∈ B0 and x ∈ B denote position vectors in Euclidean space. Referential and spatial basis vectors are then
written, respectively, as

GA(X ) = ∂AX, ga(x) = ∂ax. (4)

Reciprocal basis vectors are GA(X ) and ga(x). Scalar products of basis vectors and their reciprocals are

〈GA, GB〉 = δA
B , 〈ga, gb〉 = δa

b . (5)

Kronecker delta symbols are δA
B and δa

b . Indices in parentheses are symmetric, indices in square brackets are
anti-symmetric, and indices between vertical bars are excluded from (anti-)symmetry operations, e.g.

A(AB) = 1

2
(AAB + ABA), A[AB] = 1

2
(AAB − ABA), A[A|C|B] = 1

2
(AACB − ABCA). (6)

From (3),
∂[A[∂B](·)] = 0, ∂[a[∂b](·)] = 0. (7)

Using (5), the scalar product of a vector V = V AGA and a covector ααα = αBGB is

〈V,ααα〉 = V AαB〈GA, GB〉 = V AαBδB
A = V AαA. (8)

The tensor product or outer product ⊗ obeys

(GA ⊗ GB)GC = GA〈GB, GC〉. (9)

Symmetric metric tensors G(X ) and g(x) are introduced for respective configurations B0 and B:

G(X ) = GABGA ⊗ GB = (GA · GB)GA ⊗ GB, GAB = G(AB); (10)

g(x) = gabga ⊗ gb = (ga · gb)ga ⊗ gb, gab = g(ab); (11)

where the dot product of vectors V and W is

V · W = V AW B(GA · GB) = V AWA. (12)

As indicated, metric tensors can be used to lower contravariant indices:

VA = V BGAB, GA = GABGB. (13)

Inverses of metric tensors are

G−1 = GABGA ⊗ GB = (GA · GB)GA ⊗ GB, GAB = G(AB); (14)

g−1 = gabga ⊗ gb = (ga · gb)ga ⊗ gb, gab = g(ab); (15)

where the dot product of covectors ααα and βββ is

ααα · βββ = αAβB(GA · GB) = αAβA. (16)

As indicated, inverse metric tensors can be used to raise covariant indices:

V A = VBGAB, GA = GABGB. (17)

Furthermore, from the definition of the inverse operation,

GACGCB = δA
B , gacgcb = δa

b . (18)
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Determinants of metric tensors and their inverses are written as

G = det G = det (GAB), G−1 = det G−1 = det (GAB) = 1/G; (19)

g = det g = det (gab), g−1 = det g−1 = det (gab) = 1/g. (20)

Permutation tensors are defined as

εABC = 1√
G

eABC, εABC =
√

G eABC; εabc = 1√
g

eabc, εabc = √
g eabc. (21)

Permutation symbols are eABC, eABC, eabc, and eabc; definitions and identities involving third-order permutation
symbols implicitly assume a three dimensional ambient space. In this paper, metric tensors are assumed positive
definite over any volume [39]; however, in certain coordinate systems, determinants of metric tensors or their
inverses may be zero or undefined at certain points, lines, or surfaces; for example, along null radial coordi-
nates in spherical or cylindrical systems. Shifter tensors, examples of two-point tensors, can be introduced in
Euclidean space [30, 39]:

ga
A(x, X ) = 〈ga, GA〉, gA

a (x, X ) = 〈ga, GA〉; (22)

gaA(x, X ) = ga · GA = gAa, gaA(x, X ) = ga · GA = gAa; (23)

ga
BgB

b = δa
b , gA

b gb
B = δA

B ; (24)

gaA = gabgb
A = GABgB

a = gabGABgBb; (25)

det (gA
a ) = 1/ det (ga

A) =
√

det (gab)/ det (GAB) =
√

g/G. (26)

Vector V and covector ααα can then be written

V = V AGA = (V agA
a )(gb

Agb) = V aδb
agb = V aga; (27)

ααα = αAGA = (αaga
A)(gA

b gb) = αaδ
a
bgb = αaga. (28)

The following rules for shifting of basis vectors are implied:

ga = gA
a GA, ga = ga

AGA; GA = ga
Aga, GA = gA

a ga. (29)

2.2. Linear connections

Discussed in what follows are connection coefficients and covariant differentiation, torsion and curvature
tensors, Riemannian geometry, and features of Euclidean space.

2.2.1. Covariant derivatives. Associated with a linear connection in configuration B0 is the covariant derivative
operator ∇. The covariant derivative assigns to two vector fields V, W a third vector field ∇VW, called the
covariant derivative of W along V. In coordinates,

∇VW = (V B∂BW A + 	��A
BCW CV B)GA. (30)

In n-dimensional space, n3 entries of the object 	��A
BC are called connection coefficients. The covariant derivative

is applied to components of vectors and tensors of higher order as [27]

∇N AA...F
G...M = ∂N AA...F

G...M + 	��A
NRAR...F

G...M + · · · + 	��F
NRAA...R

G...M − 	��R
NGAA...F

R...M − · · · − 	��R
NM AA...F

G...R. (31)

Indices of covariant differentiation on the left-hand side correspond to those of partial differentiation and the
first covariant index of the connection coefficients on the right-hand side. The covariant derivative of a scalar
field A(X ) is equivalent to its partial derivative, i.e. ∇N A = ∂N A. Definitions can be applied analogously to
configuration B with coordinates xa.
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2.2.2. Torsion and curvature. The torsion tensor of an arbitrary connection with coefficients 	��A
BC is defined in

holonomic coordinates as
T = T ��A

BC GB ⊗ GC ⊗ GA = 	��A
[BC]G

B ⊗ GC ⊗ GA. (32)

Components of the torsion tensor are the anti-symmetric covariant components of its corresponding connection:
T ��A

BC = 	��A
[BC]. Components of the Riemann–Christoffel curvature tensor of this arbitrary connection are

R���A
BCD = 2∂[B	��A

C]D + 2	��A
[B|E|	

��E
C]D. (33)

Both the torsion and curvature transform under a conventional change of basis as true tensors. Different defini-
tions are used for torsion and curvature; those listed here follow [14, 27]. Skew second covariant derivatives of
a contravariant vector V and a covector ααα can be expressed as [27]

∇[B∇C]V
A = ∇[B(∂C]V

A + 	��A
C]DV D) = 1

2
R���A

BCDV D − T ��D
BC ∇DV A, (34)

∇[B∇C]αD = ∇[B(∂C]αD − 	��A
C]DαA) = −1

2
R���A

BCDαA − T ��A
BC∇AαD. (35)

2.2.3. Arbitrary holonomic connections. Coefficients of an arbitrary connection in holonomic coordinates can be
written [27]

	��A
BC = {��ABC} + T ��A

BC − T �A�
C�B + TA��

�BC + 1

2
(M ��A

BC + M �A�
C�B − MA��

�BC). (36)

Here, GAB and its inverse GAB are symmetric, three times differentiable, invertible, but otherwise arbitrary
second-order tensors. Christoffel symbols of the tensor GAB are

{��ABC} = 1

2
GAD(∂BGCD + ∂CGBD − ∂DGBC) (symbols of the second kind); (37)

{BC,A} = GAD{��DBC} (symbols of the first kind). (38)

The third-order object
M ��A

BC = GADMBCD = −GAD∇BGCD = GCD∇BGAD, (39)

where the final equality follows from ∇B(GCDGAD) = ∇BδA
C = 0. The covariant derivative of GAB follows as

∇AGBC = ∂AGBC − 	��D
AB GDC − 	��D

AC GBD = −MABC = −MA(BC). (40)

When ∇AGBC = 0 (or when MABC = 0), the connection is said to be metric with respect to GAB, i.e. a metric
connection. For a metric connection, covariant differentiation via ∇ and lowering (raising) indices by GAB (GAB)
commute.

2.2.4. Riemannian geometry. In Riemannian geometry, by definition, the torsion vanishes and the connection is
metric:

	��A
BC = {��ABC} = 1

2
GAD(∂BGCD + ∂CGBD − ∂DGBC), T ��A

BC = 0, MABC = 0. (41)

In Riemannian geometry, the number of independent components of the Riemann–Christoffel curvature tensor
is n2(n2 − 1)/12; for example, one component for two-dimensional space and six for three-dimensional space.

2.2.5. Euclidean space. Let GAB(X ) = GA · GB be the metric tensor of the space. The Levi-Civita connection
coefficients of GAB, written as G

	
��A
BC, are the associated metric and torsion-free connection coefficients of (41):

G
	

��A
BC = 1

2
GAD(∂BGCD + ∂CGBD − ∂DGBC) = G

	
��A
CB. (42)
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The superposed G is a descriptive label rather than a free index and is exempt from the summation convention. In
Euclidean space, the Riemann–Christoffel curvature tensor of the Levi-Civita connection vanishes identically:

G
R

���A
BCD = 2

(
∂[B

G
	

��A
C]D + G

	
��A
[B|E|

G
	

��E
C]D

)
= 0. (43)

In n-dimensional Euclidean space, a transformation to a n-dimensional Cartesian coordinate system is admitted
a each point X such that GAB(X ) → δAB, where δAB are covariant Kronecker delta symbols. When the cur-
vature tensor of the connection vanishes, the space is said to be intrinsically flat; otherwise, the space is said
to be intrinsically curved. In two dimensions, a cylindrical shell is intrinsically flat, while a spherical shell is
intrinsically curved.

Henceforward, reference configuration B0 is treated as a three-dimensional Euclidean space. More precisely,
in this manuscript, when a configuration is identified with n-dimensional Euclidean space, a simply connected
deformable body of finite size in that configuration is assumed to occupy an open region of infinitely extended n-
dimensional Euclidean vector space. In the interest of brevity, such a configuration is simply labeled a Euclidean
space.

The covariant derivative associated with the Levi-Civita connection on B0 is written as

G∇A
(·) = (·); A. (44)

Covariant derivatives of basis vectors and their reciprocals vanish, leading to

GA; B = ∂BGA − G
	

��C
BA GC = 0 ⇒ ∂BGA = G

	
��C
BA GC, (45)

GA
;B = ∂BGA + G

	
��A
BCGC = 0 ⇒ ∂BGA = −G

	
��A
BCGC. (46)

It follows that Christoffel symbols can be computed as

G
	

��A
BC = G

	
��D
BCδA

D = G
	

��D
BC〈GD, GA〉 = 〈∂BGC, GA〉. (47)

The partial derivative of the metric tensor is

∂CGAB = ∂C(GA · GB) = 2 G
	

��D
C(AGB)D. (48)

Because the Levi-Civita connection is a metric connection,

GAB;C = ∂CGAB − G
	

��D
CAGDB − G

	
��D
CBGAD = 0. (49)

From the symmetry of the Levi-Civita connection [or (4) and (7)], skew partial derivatives of basis vectors
vanish:

∂[BGA] = G
	

��C
[BA]GC = ∂[B∂A]X = 0. (50)

The following identity will be used for the derivative of the determinant of a non-singular but otherwise arbitrary
second-order tensor A [30]:

∂ det A

∂AA
�B

= A−1B
�A det A. (51)

Applying this identity to the determinant of the metric tensor,

∂A(ln
√

G) = G
	

��B
BA. (52)

Now consider the spatial configuration B, which is also henceforward identified with Euclidean space, with
metric tensor components gab(x) = ga · gb. The spatial Levi-Civita connection is

g

	
��a
bc = 1

2
gad(∂bgcd + ∂cgbd − ∂dgbc) = g

	
��a
cb . (53)
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Superposed g is a descriptive label rather than a free index and is exempt from the summation convention. In
Euclidean space, the Riemann–Christoffel curvature tensor vanishes:

g

R
���a
bcd = 2

(
∂[b

g

	
��a
c]d + g

	
��a
[b|e|

g

	
��e
c]d

)
= 0. (54)

The covariant derivative associated with the Levi-Civita connection on B is written as

g

∇ a
(·) = (·); a. (55)

Analogously to identities for the reference configuration,

ga; b = 0 ⇒ ∂bga = g

	
��c
bagc, (56)

ga
;b = 0 ⇒ ∂bga = −g

	
��a
bc gc, (57)

g

	
��a
bc = 〈∂bgc, ga〉, (58)

∂[bga] = g

	
��c
[ba]gc = ∂[b∂a]x = 0, (59)

∂cgab = 2 g

	
��d
c(agb)d, (60)

∂a(ln
√

g) = g

	
��b
ba , (61)

gab;c = 0. (62)

2.3. Differentiable operators

Differential operators, specifically the gradient, divergence, curl, and Laplacian are defined for holonomic
coordinates in Euclidean space. Partial and total covariant derivatives of two-point tensors are introduced.

2.3.1. Gradient, divergence, curl, and Laplacian. The description that follows in this subsection is framed in Euclidean
reference configuration B0 spanned by holonomic coordinates X A. Analogous definitions and identities apply
for a description in the spatial configuration. The gradient of a scalar function f (X ) is equivalent to its partial
derivative:

G∇ f = G∇A
f GA = f; AGA = ∂Af GA. (63)

The gradient of a vector field V(X ) = V AGA is

G∇V = ∂BV ⊗ GB =
(
∂BV A + G

	
��A
BCV C

)
GA ⊗ GB = V A

; BGA ⊗ GB = G∇A
V BGA ⊗ GB. (64)

The trace of a second-order tensor A is

trA = AA
�A = AABGAB = AABGAB. (65)

The divergence of a vector field V(X ) = V AGA is

〈G∇ , V〉 = tr (G∇V) = 〈∂AV, GA〉 = V A
;A = ∂AV A + G

	
��A
ABV B = 1√

G
∂A(

√
GV A), (66)

where the final equality follows from (52). The vector cross product × obeys, for two vectors V and W and two
covectors ααα and βββ,

V × W = εABCV BW CGA, ααα × βββ = εABCαBβCGA. (67)

The curl of a covariant vector field ααα(X ) obeys

G∇ × ααα = GA × ∂A(αBGB) = GA × GBαB; A = εABCαC;BGA = εABC∂BαCGA, (68)
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where the final equality follows from symmetry of the Levi-Civita connection. The Laplacian of a scalar field
f (X ) is

G∇
2
f = GABf; AB = (GAB∂Af ); B = 1√

G
∂B(

√
GGAB∂Af ). (69)

The divergence of the curl of a (co)vector field vanishes identically:

〈G∇ , G∇ × ααα〉 = εABCαC ; BA = εC[AB]αC ; (AB) = 0, (70)

as does the curl of the gradient of a scalar field:

G∇ × G∇ f = εABCf; CBGA = εA[BC]f; (BC)GA = 0. (71)

2.3.2. Partial and total covariant derivatives. Consider a two-point tensor (i.e. double tensor) A(X , x) of order two:

A = Aa
�Aga ⊗ GA. (72)

Components of the total covariant derivative of Aa
�A are defined as [14, 30, 39]

Aa
�A:B = (Aa

�A;B) + (Aa
�A;b)∂Bxb =

(
∂Aa

�A
∂X B

∣∣∣
x
− G

	
��C
BA Aa

�C

)
+

(
∂Aa

�A
∂xb

∣∣∣
X

+ g

	
��a
bc Ac

�A

)
∂xb

∂X B
. (73)

Quantities ∂Bxb will be identified with components of the deformation gradient in Section 2.4.1. Partial covariant
derivatives of Aa

�A are defined as usual covariant derivatives with respect to indices in one configuration, with
those of the other configuration held fixed:

Aa
�A;B = ∂Aa

�A
∂X B

∣∣∣
x
− G

	
��C
BA Aa

�C, Aa
�A;b = ∂Aa

�A
∂xb

∣∣∣
X

+ g

	
��a
bc Ac

�A. (74)

From (1), xa = xa(X , t). Writing Aa
�A[X , x(X , t)] = Aa

�A(X , t), the partial derivative of Aa
�A at fixed t is

∂Aa
�A

∂X B
= ∂Aa

�A
∂X B

∣∣∣
t
= ∂Aa

�A
∂X B

∣∣∣
x
+ ∂Aa

�A
∂xb

∣∣∣
X
∂Bxb. (75)

With this more conventional notation, (73) becomes

Aa
�A:B = ∂Aa

�A
∂X B

− G
	

��C
BA Aa

�C + g

	
��a
bc Ac

�A∂Bxb. (76)

The total covariant derivative can also be obtained directly by inspection of the (material) gradient of A:

G∇A = ∂BA ⊗ GB = ∂B(Aa
�Aga ⊗ GA) ⊗ GB = Aa

�A:Bga ⊗ GA ⊗ GB. (77)

The total covariant derivative can be extended to two-point tensors of arbitrary order as [30]

(Aa...e
A...E):K = (Aa...e

A...E);K + (Aa...e
A...E);k∂Kxk , (78)

where partial covariant derivatives are taken with respect to indices referred a single configuration, as in (74).
From the definition of the total covariant derivative, noting that ∂Kxk ∂lX K = δk

l , total covariant derivatives map
between configurations like partial derivatives:

(Aa...e
A...E):K∂kX K = (Aa...e

A...E);K∂kX K + (Aa...e
A...E);l∂Kxl ∂kX K = (Aa...e

A...E):k . (79)

2.4. Kinematics of integrable deformation

The deformation gradient and its inverse are introduced. The Jacobian determinant associated with volume
changes is defined, and Piola’s identities are listed.
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2.4.1. Deformation gradient. The deformation gradient F is the two-point tensor with components, from (1),

F = Fa
�Aga ⊗ GA, (80)

Fa
�A(X , t) = ∂ϕa(X , t)

∂X A
= ∂xa(X , t)

∂X A
= xa

,A = ∂Axa. (81)

Similarly, the inverse deformation gradient and its components are

F = F−1A
�aGA ⊗ ga, (82)

F−1A
�a(x, t) = ∂�A(x, t)

∂xa
= ∂X A(x, t)

∂xa
= X A

,a = ∂aX A. (83)

From differentiability and invertibility properties of the mappings in (1), det F 
= 0 and det F−1 
= 0. By
definition,

Fa
�AF−1A

�b = δa
b , F−1A

�aFa
�B = δA

B . (84)

Partial differentiation (holding time t fixed) proceeds as

∂A(·) = ∂a(·)∂Axa = ∂a(·)Fa
�A, ∂a(·) = ∂A(·)∂aX A = ∂A(·)F−1A

�a. (85)

Consider a differential line element dX in the reference configuration. Such an element is mapped to its
representation in the current configuration dx via the Taylor series [14, 41]

dxa(X ) = (Fa
�A)

∣∣∣
X

dX A + 1

2!
(Fa

�A:B)
∣∣∣
X

dX A dX B + 1

3!
(Fa

�A:BC)
∣∣∣
X

dX A dX B dX C + · · · , (86)

where components of the total covariant derivative of F are defined as in (76):

Fa
�A:B = ∂Fa

�A
∂X B

− G
	

��C
BA Fa

�C + g

	
��a
bc Fc

�AFb
�B = ∂B(∂Axa) − G

	
��C
BA ∂Cxa + g

	
��a
bc ∂Axc∂Bxb = xa

:AB. (87)

Third-order position gradient follows likewise as

Fa
�A:BC = (Fa

�A:B):C = (xa
:AB):C = xa

:ABC = ∂C[∂B(∂Axa)] + · · · . (88)

From the identity ∂A[∂B(·)] = ∂B[∂A(·)] of (3) and symmetry of the (torsion-free) Levi-Civita connection
coefficients in both reference and current configurations, it follows that

Fa
�A:B = Fa

�B:A = Fa
�(A:B), Fa

�A:BC = Fa
�(A:BC). (89)

To first order in dX, (86) is

dxa(X ) = (∂Axa)
∣∣∣
X

dX A = (Fa
�A)

∣∣∣
X

dX A, dx = F dX. (90)

Relationship (90) is the usual assumption in classical continuum field theories [37].

2.4.2. Jacobian determinant. Jacobian determinant J relates differential volume elements in reference and current
configurations:

dv = J dV . (91)

Differential volume elements in the reference (dV ) and current configuration (dv) are written symbolically as

dV =
√

G dX 1 dX 2 dX 3 ⊂ B0, dv = √
g dx1 dx2 dx3 ⊂ B. (92)
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The Jacobian determinant J [F(X , t), g(x), G(X )] is, from (21) [14, 37–39]

J = 1

6
εABCεabc Fa

�AFb
�BFc

�C = 1

6

√
g/G eABCeabcF

a
�AFb

�BFc
�C =

√
g/G det F =

√
det (gab)

det (GAB)
det (∂Axa). (93)

From similar arguments, inverse Jacobian determinant J−1[F−1(x, t), G(X ), g(x)] = 1/J is

J−1 = 1

6
εabcεABC F−1A

�aF−1B
�bF−1C

�c =
√

det (GAB)/ det (gab) det (∂aX A). (94)

When motion is restricted to rigid translation (or no motion at all), then Fa
�A = ga

A [the shifter of (22)], F =
ga

Aga ⊗GA, and J = √
g/G det(ga

A) = 1 follows from (26). Since volume remains positive, J > 0 and det F > 0.
From (51),

∂J

∂Fa
�A

= JF−1A
�a,

∂J−1

∂F−1A
�a

= J−1Fa
�A. (95)

One of Piola’s identities is derived by taking the divergence of the second expression of (95) [14]:

(J−1Fa
�A):a = ∂a(J−1Fa

�A) + J−1g

	
��a
ab Fb

�A − J−1G
	

��B
BA = J−1F−1B

�a [∂B(∂Axa) − ∂A(∂Bxa)] = 0. (96)

The same steps performed on (95) with reference and spatial coordinates interchanged produce

(JF−1A
�a):A = JFb

�A
[
∂bF−1A

�a − ∂aF−1A
�b
] = JFb

�A
[
∂b(∂aX A) − ∂a(∂bX A)

] = 0. (97)

Let the vector field A(X ) = AAGA be the Piola transform of a(x) = aaga:

AA = JF−1A
�aaa. (98)

Taking the divergence of (98) and applying the product rule for covariant differentiation along with (97) gives

AA
; A = AA

: A = (JF−1A
�a): Aaa + JF−1A

�aaa
: A = JF−1A

�aaa
: A = Jaa

: a = Jaa
; a. (99)

3. Anholonomic deformation

3.1. Anholonomic spaces and geometric interpretation

The deformation gradient is split multiplicatively into two terms, neither of which is necessarily integrable.
Geometric consequences of such a construction are considered, including rules for differentiation, coordi-
nate systems, metric tensors, and connection coefficients convected from reference or current configurations
to anholonomic space.

3.1.1. Two-term decomposition of deformation gradient. Consider a multiplicative split of the (total) deformation
gradient F into two terms:

F = F̄F̃, (100)

or in indicial notation, letting the Greek index α = 1, . . . n, where n is the dimension of Euclidean space,

∂ϕa

∂X A
= ∂Axa = Fa

�A = F̄a
�αF̃α

�A. (101)

In coordinates, terms on the right-hand side of (100) can be written

F̄(X , t) = F̄a
�αga ⊗ g̃α, F̃(X , t) = F̃α

�Ag̃α ⊗ GA. (102)

Basis vectors g̃α and their reciprocals g̃α will be described in detail later. Both F̄ and F̃ are second-order,
two-point tensor fields with positive determinants:

det F̄ = 1

6
eabce

αβχ F̄a
�αF̄b

�β F̄c
�χ > 0, det F̃ = 1

6
eαβχeABCF̃α

�AF̃β
�BF̃χ

�C > 0. (103)
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Figure 1. Mappings among reference, intermediate, and current configurations of a deformable body.

Permutation symbols are eαβχ and eαβχ ; relations involving these implicitly assume n = 3. Inverting
(100)–(102),

F−1 = F̃−1F̄−1, ∂aX A = F−1A
�a = F̃−1A

�αF̄−1α
�a; (104)

F̃−1(x, t) = F̃−1A
�αGA ⊗ g̃α, F̄−1(x, t) = F̄−1α

�ag̃α ⊗ ga. (105)

Furthermore, from the definition of the inverse,

F̃α
�BF̃−1A

�α = δA
B , F̄a

�αF̄−1α
�b = δa

b , F̃α
�AF̃−1A

�β = F̄a
�β F̄−1α

�a = δα
β , (106)

with Kronecker delta symbols δα
β . The target space of F̃ and F̄−1 is intermediate configuration B̃. Figure 1

illustrates deformation mappings between reference, intermediate, and current configurations entering (100).
A multiplicative decomposition such as (100) can be used to represent various physical behaviors. Usually,

F̄ is associated with locally recoverable elastic deformation, such that each material element in configuration B̃
is locally unloaded or stress-free. In geometrically nonlinear crystal mechanics [2, 3, 9, 11, 14, 25, 33, 42, 43],
F̄ is associated with lattice (i.e. thermoelastic) deformation, and F̃ is associated with plastic (i.e. dislocation
slip enabled) deformation. In multiplicative descriptions involving explicit thermal deformation [14, 15, 25],
the total compatible thermoelastic deformation F is split into locally recoverable elastic deformation F̄ and
stress-free thermal deformation F̃. In theories of twinning [19, 20], F̃ represents stress-free twinning shear. In
theories of porous or damaged media [18], F̃ represents volumetric expansion associated with voids. In theories
of growth in biomaterials [16, 25], F̃ represents stretching and mass changes associated with tissue structure
evolution.

A decomposition somewhat alternative to (100) enables description of materials containing initial residual
stresses and various kinds of defects. In the continuum theory of inhomogeneous bodies of Noll [6], a decom-
position F̂ = (∇γ )K−1 is proposed, where K may denote a generally anholonomic mapping from a residually
stressed intermediate configuration to an unstressed, but generally disconnected, reference configuration. The
elastic deformation associated with stresses superimposed on the intermediate configuration is represented by
the integrable (i.e. compatible) deformation gradient ∇γ , where γ is the motion associated with this elastic
deformation gradient. Mapping F̂, like K, need not be integrable. Wang and Truesdell [23] applied similar ideas
towards finding universal solutions for certain problems involving pre-stressed laminated elastic bodies.

3.1.2. Anholonomicity conditions and partial differentiation. It is assumed that F̃(X , t) is at least once continuously differ-
entiable with respect to referential coordinates X A. Single-valued coordinates x̃α(X , t) referred to intermediate
configuration B̃ that are at least two times differentiable with respect to X A exist if and only if the following
integrability conditions apply [27]:

∂AF̃α
�B = ∂BF̃α

�A ⇔ ∂2x̃α

∂X A∂X B
= ∂2x̃α

∂X B∂X A
. (107)

When (107) applies globally (i.e. for all X ∈ B0, which presumably is associated with a simply connected body)
intermediate configuration B̃ is said to be holonomic, and then like the reference configuration B0, is labeled a
Euclidean n-dimensional space:

∂[AF̃α
�B] = 0 ⇔ F̃α

�A = ∂Ax̃α. (108)
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Otherwise, single-valued coordinates x̃α(X , t) continuously (two times) differentiable with respect to X A do not
exist in intermediate configuration B̃, which is then termed an anholonomic space:

∂[AF̃α
�B] 
= 0 ⇔ x̃α(X , t) anholonomic. (109)

The domain of F̃ must be simply connected to ensure that the left equality of (108) constitutes sufficient con-
ditions for existence of a uniform covering x̃α of that domain, in which case both x̃α and X A are single valued
for all X ∈ B0. When (108) (respectively, (109)) applies only over local simply connected regions of B0, then
deformation map F̃ is designated as holonomic (respectively, anholonomic) only in those regions. Regardless
of which of (108) or (109) applies, partial differentiation with respect to intermediate coordinates is defined as
follows [5, 27, 28, 31]:

∂α(·) = ∂A(·)F̃−1A
�α. (110)

Arguments in (107)–(110) can be repeated for F̄−1(x, t), which is assumed continuously differentiable with
respect to spatial coordinates xa. Single-valued coordinates x̃α(x, t) referred to intermediate configuration B̃ that
are continuous and at least two times differentiable with respect to xa exist if and only if

∂aF̄−1α
�b = ∂bF̄−1α

�a ⇔ ∂2x̃α

∂xa∂xb
= ∂2x̃α

∂xb∂xa
. (111)

When (111) applies globally on B, intermediate configuration B̃ is holonomic:

∂[aF̄−1α
�b] = 0 ⇔ F̄−1α

�a = ∂ax̃α. (112)

Otherwise,
∂[aF̄−1α

�b] 
= 0 ⇔ x̃α(x, t) anholonomic. (113)

Partial differentiation with respect to intermediate coordinates also obeys

∂α(·) = ∂a(·)F̄a
�α. (114)

Verification that (110) and (114) are equivalent is straightforward using (85) and (101):

∂α(·) = ∂A(·)F̃−1A
�α = ∂a(·) ∂Axa F̃−1A

�α = ∂a(·)Fa
�AF̃−1A

�α = ∂a(·)F̄a
�α. (115)

Second partial anholonomic derivatives obey the relations

∂α[∂β(·)] = ∂A[∂B(·)F̃−1B
�β]F̃−1A

�α = ∂β[∂α(·)] + 2∂A(·)∂[αF̃−1A
�β]. (116)

Following similar arguments,
∂α[∂β(·)] = ∂β[∂α(·)] + 2∂a(·)∂[αF̄a

�β]. (117)

In general, second partial anholonomic differentiation is not symmetric. Explicitly,

∂[α[∂β](·)] = 1

2
{∂α[∂β(·)] − ∂β[∂α(·)]} = ∂A(·)∂[αF̃−1A

�β] = ∂a(·)∂[αF̄a
�β]. (118)

Only when (108) and (112) apply such that B̃ is holonomic is second partial anholonomic differentiation is
symmetric:

F̃−1A
�β = ∂βX A ⇒ ∂[αF̃−1A

�β] = ∂[α∂β]X
A = 0 ⇒ ∂α[∂β(·)] = ∂β[∂α(·)], (119)

F̄a
�β = ∂βxa ⇒ ∂[αF̄a

�β] = ∂[α∂β]x
a = 0 ⇒ ∂α[∂β(·)] = ∂β[∂α(·)]. (120)

Even when (108) and (112) apply globally on B0 and B, respectively, inverse coordinate functions X A(x̃, t) and
xa(x̃, t) may only be available locally [6].
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3.1.3. Anholonomic basis vectors and metric tensors. By definition, basis vectors and their reciprocals in intermediate
configuration B̃ obey

〈g̃α, g̃β〉 = δα
β . (121)

A symmetric metric tensor g̃ on B̃ is defined in components in terms of a scalar or dot product as

g̃αβ = g̃α · g̃β = g̃β · g̃α = g̃βα = g̃(αβ). (122)

The dot product of two generic contravariant vectors V = Vαg̃α and W = Wαg̃α is computed as

V · W = Vαg̃α · Wβ g̃β = VαWβ(g̃α · g̃β) = Vαg̃αβWβ = VαWα = VαWα. (123)

As indicated, the metric tensor can be used to lower contravariant indices in the usual manner:

Vα = Vβ g̃αβ , g̃α = g̃αβ g̃β . (124)

Metric g̃ is assumed to be positive definite, with positive determinant g̃ over any volume (i.e. excluding possible
points, lines, or surfaces where g̃ may be zero or undefined):

g̃ = det g̃ = det(g̃αβ) = 1

6
eαβχeδεφ g̃αδ g̃βε g̃χφ > 0. (125)

The inverse g̃−1 with components g̃αβ on B̃ obeys, by definition,

g̃αβ = g̃α · g̃β = g̃β · g̃α = g̃βα = g̃(αβ), g̃αχ g̃χβ = δα
β . (126)

The inverse metric (126) enables the dot product of generic covariant vectors ααα = ααg̃α and βββ = βαg̃α on B̃:

ααα · βββ = ααg̃α · ββ g̃β = ααββ(g̃α · g̃β) = ααg̃αβββ = ααβα = ααβ
α. (127)

Components of g̃−1 can be used to raise indices as shown above. Permutation tensors in configuration B̃ are
defined as

εαβχ = 1√
g̃

eαβχ , εαβχ =
√

g̃ eαβχ . (128)

Shifter tensors can also be introduced among basis vectors in intermediate and reference or spatial configura-
tions:

gα
A = 〈g̃α, GA〉, gA

α = 〈g̃α, GA〉; gα
a = 〈g̃α, ga〉, ga

α = 〈g̃α, ga〉; (129)

gαA = g̃α · GA = gAα, gαA = g̃α · GA = gAα; (130)

gαa = g̃α · ga = gaα, gαa = g̃α · ga = gaα; (131)

gA
αgα

B = δA
B , ga

αgα
b = δa

b , gα
AgA

β = gα
a ga

β = δα
β ; (132)

det (gA
α) = 1/ det (gα

A) =
√

det (g̃αβ)/ det (GAB) =
√

g̃/G; (133)

det (gα
a ) = 1/ det (ga

α) =
√

det (gab)/ det (g̃αβ) =
√

g/g̃. (134)

The following rules apply for shifting of basis vectors:

g̃α = gA
αGA = ga

αga, g̃α = gα
AGA = gα

a ga; (135)

GA = gα
Ag̃α, GA = gA

α g̃α; ga = gα
a g̃α, ga = ga

αg̃α. (136)

Furthermore, since
ga = gα

a g̃α = gα
a gA

αGA = gA
a GA ⇔ gA

a = gα
a gA

α , (137)
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it follows from the product rule of determinants that det (gA
a ) = [det (gα

a )][det (gA
α)] = [

√
g/g̃][

√
g̃/G] = √

g/G
in agreement with (26).

First consider the case when (108) applies, such that B̃ can be regarded as a Euclidean space and a position
vector x̃ can be assigned to any point x̃(X , t) ∈ B̃. In that case, basis vectors can be defined in the usual manner,
similarly to (4):

g̃α(x̃) = ∂αx̃ = ∂ x̃

∂ x̃α
. (138)

Metric tensor components corresponding to (138) are

g̃αβ(x̃) = ∂αx̃ · ∂β x̃. (139)

Any time-independent Euclidean coordinate system (e.g. fixed curvilinear or Cartesian coordinates) can be used
for x̃α in this case.

Next consider the case when (109) applies, such that single-valued coordinates x̃α(X , t) continuously dif-
ferentiable with respect to X A do not exist in B̃. In that case, a one-to-one correspondence between a material
particle X and an intermediate point x̃ is not applicable. Intermediate basis vectors associated with a given
material particle should then be assigned to X rather than x̃, i.e. g̃α(X ). Any time-independent coordinate sys-
tem could be used for g̃α(X ) in this case (time-dependent convected systems are considered later). However,
it may prove practical to select identical, possibly curvilinear, coordinate systems in configurations B0 and B̃
[14, 36]:

g̃α(X ) = δA
αGA = δA

α∂AX = δA
α F̃β

�A∂βX. (140)

Metric tensor components corresponding to (140) are

g̃αβ(X ) = g̃α · g̃β = δA
αGA · δB

βGB = δA
αδB

βGAB, (141)

where GAB(X ) is the referential metric tensor of (10). Mixed Kronecker delta symbols are equivalent to shifter
tensors for coincident coordinate systems and have the usual meaning, i.e.

δA
α = 1∀A = α, δA

α = 0∀A 
= α. (142)

The determinant of the metric is simply

g̃(X ) = det(g̃αβ) = det(δA
α ) det(δB

β ) det(GAB) = det(GAB) = G. (143)

Explicitly, shifter tensor components are

gα
A = 〈g̃α, GA〉 = 〈δα

BGB, GA〉 = δα
BδB

A = δα
A , (144)

with determinant (133) reducing to

det (gA
α) = 1/ det (gα

A) =
√

g̃/G = 1. (145)

Now consider the case when (113) applies, such that single-valued coordinates x̃α(x, t) continuously differ-
entiable with respect to xa do not exist in B̃. In that case, a one-to-one correspondence between a spatial point
x and an intermediate point x̃ is not applicable. Intermediate basis vectors associated with a given spatial point
should then be assigned to x rather than x̃, i.e. g̃α(x). Any time-independent coordinate system could be used for
g̃α(x) in this case. However, a pragmatic choice corresponds to identical coordinate systems in configurations B
and B̃ [14]:

g̃α(x) = δa
αga = δa

α∂ax = δa
αF̄−1β

�a∂βx. (146)

Choices (140) and (146) differ but are not contradictory; in particular, basis vectors in (140) and (146) are
related by δa

αga[x(X , t)] = δa
αgA

a (x, X )δβ

AδB
βGB(X ). Metric tensor components corresponding to (146) are

g̃αβ(x) = g̃α · g̃β = δa
αga · δb

βgb = δa
αδ

b
βgab, (147)
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where gab(x) is the spatial metric tensor of (11). Mixed Kronecker delta symbols satisfy

δa
α = 1∀a = α, δa

α = 0∀a 
= α. (148)

The determinant of the metric is

g̃(x) = det(g̃αβ) = det(δa
α) det(δb

β) det(gab) = det(gab) = g. (149)

Explicitly, shifter tensor components are

ga
α = 〈g̃α, ga〉 = 〈δb

αgb, ga〉 = δb
αδ

a
b = δa

α, (150)

with determinant of (134) reducing to

det (gα
a ) = 1/ det (ga

α) =
√

g/g̃ = 1. (151)

Finally, the simplest choice of coordinate system for configuration B̃ is a Cartesian system with constant
basis vectors eα:

g̃α = eα, g̃αβ = eα · eβ = δαβ , g̃ = det(δαβ) = 1. (152)

When anholonomicity conditions (109) or (113) apply, such a Cartesian frame is assigned externally to
configuration B̃, since in that case B̃ is not a Euclidean space.

3.1.4. Convected anholonomic connection coefficients. Arbitrary connection coefficients 	��A
BC in reference configuration

B0 can be mapped to coefficients 	̂��α
βχ in configuration B̃ via [14, 27]

	̂��α
βχ = F̃α

�AF̃−1B
�β F̃−1C

�χ	��A
BC + F̃α

�A∂β F̃−1A
�χ = F̃α

�AF̃−1B
�β F̃−1C

�χ	��A
BC − F̃−1B

�β F̃−1A
�χ∂BF̃α

�A, (153)

where (110) applies. Torsion tensor components T ��A
BC of (32) in configuration B0 map correspondingly as

T̂ ��α
βχ = F̃α

�AF̃−1B
�β F̃−1C

�χT ��A
BC = F̃α

�AF̃−1B
�β F̃−1C

�χ	��A
[BC] = 	̂��α

[βχ ] + κ̂ ��α
βχ = T̂ ��α

[βχ ], (154)

where components of the anholonomic object κ̂κκ are defined as [27]

κ̂ ��α
βχ = F̃−1A

�β F̃−1B
�χ∂[AF̃α

�B] = κ̂ ��α
[βχ ]. (155)

Note also the identities

κ̂
��χ
αβ = F̃−1A

�αF̃−1B
�β∂[AF̃χ

�B] = F̃−1A
�[αF̃−1B

�β]∂AF̃χ
�B = −F̃−1A

�[αF̃χ

�|B|∂AF̃−1B
�β] = −F̃χ

�B∂[αF̃−1B
�β]. (156)

When F̃(X , t) is an integrable function of X A and hence (108) applies, then κ̂ ��α
βχ = 0. Assuming now that F̃

is at least twice differentiable with respect to reference coordinates X A, Riemann–Christoffel curvature tensor
components R���A

BCD of (33) in configuration B0 map as [14, 27]

R̂���α
βχδ = F̃α

�AF̃−1B
�β F̃−1C

�χ F̃−1D
�δR���A

BCD = 2∂[β	̂��α
χ ]δ + 2	̂��α

[β|ε|	̂
��ε
χ ]δ + 2κ̂ ��ε

βχ 	̂��α
εδ = R̂���α

[βχ ]δ. (157)

Relations (154) and (157) are consistent with (34) and (35) [27]:

∇[β∇χ ]V
α = ∇[β(∂χ ]V

α + 	̂��α
χ ]δV δ) = 1

2
R̂���α

βχδV δ − T̂ ��δ
βχ∇δVα, (158)

∇[β∇χ ]αδ = ∇[β(∂χ ]αδ − 	̂��α
χ ]δαα) = −1

2
R̂���α

βχδαα − T̂ ��α
βχ ∇ααδ, (159)
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where Vα and αδ are respective anholonomic components of twice-differentiable vector and covector fields,
and covariant differentiation with respect to anholonomic coordinates is defined formally later in (179). Skew
components of second partial derivatives in (118) can be written as follows in terms of the anholonomic object:

∂[α[∂β](·)] = ∂A(·)∂[αF̃−1A
�β] = ∂χ (·)F̃−1B

�[β F̃−1A
�α]∂BF̃χ

�A = −κ̂
��χ
αβ ∂χ (·). (160)

Relationships analogous to (153)–(157) can be used to map connection coefficients and torsion and curva-
ture tensors referred to spatial coordinates to intermediate space B̃ by replacing referential indices with spatial
indices (e.g. X A → xa) and replacing components F̃α

�A with F̄−1α
�a, the latter assumed twice differentiable with

respect to xa.
A convected coordinate representation of F̃(X , t) can be used to verify transformation (153) when 	��A

BC =
G
	

��A
BC corresponds to the Levi-Civita connection of (42) for Euclidean space on B0. Convected anholonomic

basis vectors and their reciprocals are defined as

g̃′
α(X , t) = F̃−1A

�αGA, g̃′α(X , t) = F̃α
�AGA; (161)

〈g̃′
α, g̃′β〉 = F̃−1A

�αF̃β
�B〈GA, GB〉 = F̃−1A

�αF̃β
�BδB

A = F̃−1A
�αF̃β

�A = δβ
α . (162)

The deformation map of the second of (102) can then be expressed as

F̃(X , t) = F̃α
�Ag̃α ⊗ GA = g̃α ⊗ F̃α

�AGA = g̃α ⊗ g̃′α. (163)

Components of the metric tensor corresponding to basis vectors in (161) are

g̃′
α · g̃′

β = F̃−1A
�αGA · F̃−1B

�βGB = F̃−1A
�αF̃−1B

�βGA · GB = F̃−1A
�αGABF̃−1B

�β . (164)

Taking the partial anholonomic derivative of g̃′
α using (110) results in

∂β g̃′
α = ∂β(F̃−1A

�αGA) =
(

F̃χ

�CF̃−1B
�β F̃−1A

�α
G
	

��C
BA − F̃−1B

�β F̃−1A
�α∂BF̃χ

�A
)

g̃′
χ = 	̃

��χ
βα g̃′

χ , (165)

in agreement with (153). The torsion tensor of (154) vanishes identically in this case from (42):

T̃ ��α
βχ = F̃α

�AF̃−1B
�β F̃−1C

�χ
G
	

��A
[BC] = 	̃��α

[βχ ] + κ̃ ��α
βχ = 0, (166)

where the anholonomic object is the same as that of (155):

κ̃ ��α
βχ = F̃−1A

�β F̃−1B
�χ∂[AF̃α

�B]. (167)

Following an analogous approach with F̄−1(x, t), convected anholonomic basis vectors and their reciprocals
are

ḡ′
α(x, t) = F̄a

�αga, ḡ′α(x, t) = F̄−1α
�aga. (168)

〈ḡ′
α, ḡ′β〉 = F̄a

�αF̄−1β

�b〈ga, gb〉 = F̄a
�αF̄−1β

�bδ
b
a = F̄a

�αF̄−1β
�a = δβ

α ; (169)

The deformation map of the first of (102) can be expressed as

F̄(X , t) = F̄a
�αga ⊗ g̃α = ḡ′

α ⊗ g̃α. (170)

Components of the metric tensor corresponding to basis vectors in (168) are

ḡ′
α · ḡ′

β = F̄a
�αga · F̄b

�βgb = F̄a
�αF̄b

�βga · gb = F̄a
�αgabF̄b

�β . (171)

Taking the partial anholonomic derivative of ḡ′
α using (114) results in

∂β ḡ′
α = ∂β(F̄a

�αga) =
(

F̄−1χ
�cF̄

b
�β F̄a

�α
g

	
��c
ba − F̄b

�β F̄a
�α∂bF̄−1χ

�a
)

ḡ′
χ = 	̄

��χ
βα ḡ′

χ . (172)
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The torsion tensor of (154) vanishes identically in this case from (53):

T̄ ��α
βχ = F̄−1α

�aF̄b
�β F̄c

�χ
g

	
��a
[bc] = 	̄��α

[βχ ] + κ̄ ��α
βχ = 0, (173)

where the corresponding anholonomic object is

κ̄ ��α
βχ = F̄a

�β F̄b
�χ∂[aF̄−1α

�b]. (174)

Connection coefficients 	̃
��χ
βα of (165) and 	̄

��χ
βα of (172) are generally different. However, following from

decomposition (101), it can be shown that their skew covariant components are equal [14, p. 651]:

	̄
��χ
[βα] = −F̄b

�β F̄a
�α∂[bF̄−1χ

�a] = −F̃−1B
�β F̃−1A

�α∂[BF̃χ

�A] = 	̃
��χ
[βα]. (175)

Thus, anholonomic objects of each connection defined in (167) and (174) are equal:

κ̄
��χ
βα = −	̄

��χ
[βα] = −	̃

��χ
[βα] = κ̃

��χ
βα . (176)

Computing skew partial derivatives of convected basis vectors as

∂[αg̃′
β] = 	̃

��χ
[αβ]g̃

′
χ = κ̃

��χ
βα g̃′

χ , ∂[αḡ′
β] = 	̄

��χ
[αβ]ḡ

′
χ = κ̄

��χ
βα ḡ′

χ , (177)

the following local integrability conditions are equivalent:

∂[αg̃′
β] = 0 ⇔ ∂[αḡ′

β] = 0 ⇔ κ̃
��χ
βα = κ̄

��χ
βα = 0 ⇔ F̃α

�A = ∂Ax̃α ⇔ F̄−1α
�a = ∂ax̃α. (178)

3.2. Anholonomic covariant derivatives

Differentiation with respect to general anholonomic coordinates is developed. Covariant derivatives and cor-
responding connection coefficients are defined. Various choices of anholonomic connection coefficients corre-
sponding to different basis vectors in the intermediate configuration are examined. Total covariant derivatives
of two-point (and three-point) tensors with one or more indices referred to anholonomic space are defined.
Divergence, curl, and Laplacian operations and corresponding identities are presented.

3.2.1. Differentiation. Covariant differentiation with respect to anholonomic coordinates is defined similarly to
(31). Let A be a vector or higher-order tensor field with components Aα...φ

γ ...μ. The covariant derivative of A is
computed as

∇νAα...φ
γ ...μ = ∂νAα...φ

γ ...μ + 	��α
νρ Aρ...φ

γ ...μ + · · · + 	��φ
νρ Aα...ρ

γ ...μ − 	��ρ
νγ Aα...φ

ρ...μ − · · · − 	��ρ
νμAα...φ

γ ...ρ . (179)

Partial differentiation obeys (115). Connection coefficients referred to intermediate space B̃, written as 	��α
νρ ,

in general consist of up to n3 entries, where n is the dimensionality of Euclidean spaces B0 and B. Partial
derivatives of intermediate basis vectors and their reciprocals obey (restricting attention to metric connections),
by definition,

∂β g̃α = 	
��χ
βα g̃χ , ∂β g̃α = −	��α

βχ g̃χ . (180)

Therefore, covariant derivatives of intermediate basis vectors vanish identically:

∇β g̃α = ∂β g̃α − 	
��χ
βα g̃χ = 0, ∇β g̃α = ∂β g̃α + 	��α

βχ g̃χ = 0. (181)

For example, applying (179)–(180) to generic vector field A = Aαg̃α gives the gradient of A:

∂βA ⊗ g̃β = ∂β(Aαg̃α) ⊗ g̃β = (∂βAα + Aχ	��α
βχ )g̃α ⊗ g̃β = ∇βAαg̃α ⊗ g̃β . (182)

By definition, the gradient of a scalar field is the same as its partial derivative, e.g.

∇αA = ∂αA = F̃−1B
�α∂BA = F̄b

�α∂bA. (183)
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Recall from (176) that the anholonomic object, denoted generically by κ
��χ
βα = κ̃

��χ
βα = κ̄

��χ
βα , obeys

κ
��χ
βα = F̃−1B

�β F̃−1A
�α∂[BF̃χ

�A] = −F̃χ

�A∂[β F̃−1A
�α] = F̄b

�β F̄a
�α∂[bF̄−1χ

�a] = −F̄−1χ
�a∂[β F̄a

�α] = κ
��χ
[βα]. (184)

The intermediate torsion, denoted generically by T ��χ
βα , is defined using the final two equalities in (154):

T ��α
βχ = 	��α

[βχ ] + κ ��α
βχ = T ��α

[βχ ], (185)

Here, the first two equalities in (154) are not required to hold for this generic definition of the torsion of an
anholonomic space (i.e. the torsion in (185) need not map between configurations as a true tensor). Similarly,
the intermediate curvature, denoted generically by R��α

βχδ, is defined using only the final two equalities in (157):

R���α
βχδ = 2∂[β	��α

χ ]δ + 2	��α
[β|ε|	

��ε
χ ]δ + 2κ ��ε

βχ	��α
εδ = R���α

[βχ ]δ. (186)

Here, the first two equalities in (157) are not required to hold for this generic definition of the curvature of an
anholonomic space (i.e. the curvature in (186) need not map between configurations as a true tensor).

With definitions (184), (185), and (186) now given, skew gradients can be obtained. Specifically, from (160),

∂[α[∂β](·)] = −κ
��χ
αβ ∂χ (·). (187)

For the twice-differentiable scalar field A,

∇[α(∇β]A) = ∂[α(∂β]A) − 	
��χ
[αβ]∂χA = −(κ ��χ

αβ + 	
��χ
[αβ])∂χA = −T ��χ

αβ ∂χA. (188)

It can be shown that (158) and (159) also hold, i.e.

∇[β∇χ ]V
α = 1

2
R���α

βχδV δ − T ��δ
βχ∇δVα, ∇[β∇χ ]αδ = −1

2
R���α

βχδαα − T ��α
βχ ∇ααδ, (189)

where Vα and αδ denote components of twice-differentiable vector and covector fields, respectively.

3.2.2. Anholonomic connection coefficients. Particular choices of coefficients 	��α
βχ entering (179) and (180) are

discussed in what follows.
First consider the case when (108) applies, such that B̃ can be regarded as a Euclidean space and a position

vector x̃ can be assigned to any point x̃(X , t) ∈ B̃. In that case, basis vectors and metric tensor components can
be defined as in (138) and (139), and any time-independent Euclidean coordinate system (e.g. fixed curvilinear
or Cartesian coordinates) can be used for x̃α. Coefficients of the Levi-Civita connection on B̃ are, analogously
to (42),

	��α
βχ (x̃) = g̃

	
��α
βχ = 1

2
g̃αδ(∂β g̃χδ + ∂χ g̃βδ − ∂δg̃βχ ) = g̃

	
��α
χβ . (190)

Since x̃α are holonomic coordinates in Euclidean space, the torsion, anholonomic object, and curvature
associated with coefficients (190) all vanish identically. Skew gradients of basis vectors also vanish [28]:
∂[αg̃β] = ∂[α∂β]x̃ = 0.

Next consider the case when (109) applies, such that single-valued coordinates x̃α(X , t) continuously differ-
entiable with respect to X A do not exist in B̃. When, following (140), identical coordinate systems are used in
configurations B0 and B̃:

g̃α(X ) = δA
αGA, (191)

g̃α(X ) = g̃αβ g̃β = δα
Cδ

β
DGCDδA

βGA = δα
CGCAGA = δα

AGA, (192)

g̃αβ(X ) = δA
αδB

βGAB, g̃αβ(X ) = δα
Aδ

β
BGAB. (193)
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Taking the partial derivative of (191) and applying (45) and (110) gives

∂β g̃α = δA
α∂βGA = δA

α F̃−1B
�β∂BGA = δA

α F̃−1B
�β

G
	

��C
BA GC = δA

α F̃−1B
�β

G
	

��C
BA δ

χ

C g̃χ = 	
��χ
βα g̃χ . (194)

Similarly, taking the partial derivative of (192) and applying (46) and (110) gives

∂β g̃α = δα
A∂βGA = δα

AF̃−1B
�β∂BGA = −δα

AF̃−1B
�β

G
	

��A
BCGC = −δα

AF̃−1B
�β

G
	

��A
BCδC

χ g̃χ = −	��α
βχ g̃χ . (195)

Comparing (180), (194), and (195), connection coefficients consistent with (140) are time dependent:

	��α
βχ (X , t) = δα

AδC
χ

G
	

��A
BC(X )F̃−1B

�β(X , t). (196)

Since Levi-Civita connection coefficients G
	

��A
BC are symmetric, it follows that 	��α

βχ defined in (196) obeys

	��α
βχ = δα

AδC
χ

G
	

��A
BCF̃−1B

�β = δα
AδC

χ
G
	

��A
CBF̃−1B

�β = δα
AδB

χ
G
	

��A
CBF̃−1C

�β . (197)

Covariant indices of 	��α
βχ are generally not symmetric; the left covariant component corresponding to

differentiation by ∇β(·) in (179) correlates with F̃−1C
�β . The torsion of (196) is defined as in (185):

T ��α
βχ = 	��α

[βχ ] + κ̃ ��α
βχ = δα

A
G
	

��A
BCF̃−1B

�[βδC
χ ] + F̃−1A

�[β F̃−1B
�χ ]∂AF̃α

�B, (198)

where κ̃ ��α
βχ is the anholonomic object associated with F̃ of (167). When the anholonomic object κ̃ ��α

βχ is non-zero,
skew partial derivatives as in (187) are generally non-zero. When the torsion T ��α

βχ is non-zero, skew covariant
derivatives of a scalar field as in (188) are generally non-zero. The Riemann–Christoffel curvature associated
with (196) is defined as in (186):

R���α
βχδ = 2∂[β	��α

χ ]δ + 2	��α
[β|ε|	

��ε
χ ]δ + 2κ̃ ��ε

βχ	��α
εδ = −2δα

AδD
δ F̃−1B

�[β F̃−1C
�χ ]∂B

G
	

��A
CD, (199)

where the vanishing of the curvature tensor of Euclidean reference space (43) has been used. When curvature
R���α

βχδ of (199) and torsion T ��α
βχ of (198) do not vanish, skew covariant derivatives of vector and covector fields are

generally non-zero, as in (189). It is noted that torsion and curvature defined in this way can each be non-zero
even when configuration B̃ is holonomic, i.e. even when F̃α

�A = ∂Ax̃α and κ̃ ��α
βχ = 0. Using (49), the (negative)

covariant derivative of the metric tensor is

Mαβχ = −∇αg̃βχ = −∂αg̃βχ + 	��δ
αβ g̃δχ + 	��δ

αχ g̃βδ = −δB
βδC

χ F̃−1A
�αGBC;A = 0. (200)

Therefore, anholonomic covariant differentiation commutes with lowering indices via the metric g̃αβ =
δA
αδB

βGAB.
Now consider the case when (113) applies, such that single-valued coordinates x̃α(x, t) continuously dif-

ferentiable with respect to xa do not exist in B̃. Following (146), identical coordinate systems are used in
configurations B and B̃:

g̃α(x) = δa
αga, (201)

g̃α(x) = g̃αβ g̃β = δα
c δ

β

d gcdδa
βga = δα

c gcaga = δα
a ga, (202)

g̃αβ(x) = δa
αδ

b
βgab, g̃αβ(x) = δα

a δ
β

b gab. (203)

Taking the partial derivative of (201) and applying (56) and (114) gives

∂β g̃α = δa
α∂βga = δa

αF̄b
�β∂bga = δa

αF̄b
�β

g

	
��c
bagc = δa

αF̄b
�β

g

	
��c
baδ

χ
c g̃χ = 	

��χ
βα g̃χ . (204)

Similarly, taking the partial derivative of (202) and applying (57) and (114) gives

∂β g̃α = δα
a ∂βga = δα

a F̄b
�β∂bga = −δα

a F̄b
�β

g

	
��a
bc gc = −δα

a F̄b
�β

g

	
��a
bc δc

χ g̃χ = −	��α
βχ g̃χ . (205)
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Comparing (180), (204), and (205), connection coefficients consistent with (146) are time dependent:

	��α
βχ (x, t) = δα

a δc
χ

g

	
��a
bc (x)F̄b

�β(x, t). (206)

Since the Levi-Civita connection g

	
��a
bc is symmetric in covariant indices, it follows that 	��α

βχ of (206) obeys

	��α
βχ = δα

a δc
χ

g

	
��a
bc F̄b

�β = δα
a δc

χ

g

	
��a
cb F̄b

�β = δα
a δb

χ

g

	
��a
cb F̄c

�β . (207)

Covariant components of 	��α
βχ are generally not symmetric; here the left covariant component corresponding to

differentiation by ∇β(·) in (179) correlates with F̄c
�β . The torsion of (206) is defined as in (185):

T ��α
βχ = 	��α

[βχ ] + κ̄ ��α
βχ = δα

a
g

	
��a
bc F̄b

�[βδc
χ ] + F̄a

�[β F̄b
�χ ]∂aF̄−1α

�b, (208)

where κ̄ ��α
βχ is the anholonomic object associated with F̄ of (174). When anholonomic object κ̄ ��α

βχ is non-zero,
skew partial derivatives as in (187) are generally non-zero. When torsion T ��α

βχ is non-zero, skew covariant deriva-
tives of a scalar field as in (188) are generally non-zero. The Riemann–Christoffel curvature of (206) is defined
as in (186):

R���α
βχδ = 2∂[β	��α

χ ]δ + 2	��α
[βε	

��ε
χ ]δ + 2κ̄ ��ε

βχ	��α
εδ = −2δα

a δd
δ F̄b

�[β F̄c
�χ ]∂b

g

	
��a
cd , (209)

where the vanishing of the curvature tensor of Euclidean current space (54) has been used. When the curvature
R���α

βχδ of (209) and torsion T ��α
βχ of (208) do not vanish, skew covariant derivatives of vector and covector fields

are generally non-zero, as in (189). Note that the curvature and torsion defined in this manner need not vanish
even if configuration B̃ is holonomic, i.e. even if F̄−1α

�a = ∂ax̃α and anholonomic object κ̄ ��α
βχ = 0. Connection

coefficients and curvature for this case are worked out explicitly for the choice of cylindrical coordinates in the
Appendix. The (negative) covariant derivative of the metric tensor is

Mαβχ = −∇αg̃βχ = −∂αg̃βχ + 	��δ
αβ g̃δχ + 	��δ

αχ g̃βδ = −δb
βδc

χ F̄a
�αgbc;a = 0, (210)

where (62) has been used. Thus, covariant differentiation commutes with lowering indices via g̃αβ = δa
αδ

b
βgab.

Finally consider the simplest case whereby Cartesian bases are used for B̃, as in (152):

g̃α = eα, g̃α = eα, g̃αβ = eα · eβ = δαβ , g̃αβ = eα · eβ = δαβ . (211)

In this case, partial derivatives of basis vectors vanish identically,

∂β g̃α = ∂βeα = F̃−1B
�β∂Beα = F̄b

�β∂beα = 	
��χ
βα g̃χ = 0, (212)

as do partial derivatives of their reciprocals,

∂β g̃α = ∂βeα = F̃−1B
�β∂Beα = F̄b

�β∂beα = −	��α
βχ g̃χ = 0. (213)

It follows that connection coefficients on B̃ must also vanish in this case:

	��α
βχ = 0. (214)

Note however that the anholonomic object need not vanish; hence, the torsion of (185) is

T ��α
βχ = κ ��α

βχ . (215)

Curvature tensor (186) vanishes identically since 	��α
βχ = 0. The covariant derivative of the metric also vanishes:

Mαβχ = −∇αg̃βχ = −∂αδβχ = −F̃−1A
�α∂Aδβχ = −F̄a

�α∂aδβχ = 0. (216)
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3.2.3. Total covariant derivatives. Covariant differentiation of two-point tensor fields with one or more components
referred to anholonomic coordinates (i.e. one or more indices referred to configuration B̃) is defined following
arguments similar to those of Section 2.3.2. First consider a generic two-point tensor of the form A(X , t), with
components Aα...φ

γ ...μ
A...F
G...M . The total covariant derivative of A is calculated as

(Aα...φ
γ ...μ

A...F
G...M ):ν = ∂ν(Aα...φ

γ ...μ
A...F
G...M )

+ 	��α
νρ Aρ...φ

γ ...μ
A...F
G...M + · · · + 	��φ

νρ Aα...ρ
γ ...μ

A...F
G...M

− 	��ρ
νγ Aα...φ

ρ...μ
A...F
G...M − · · · − 	��ρ

νμAα...φ
γ ...ρ

A...F
G...M

+ F̃−1N
�ν

G
	

��A
NRAα...φ

γ ...μ
R...F
G...M + · · · + F̃−1N

�ν
G
	

��F
NRAα...φ

γ ...μ
A...R
G...M

− F̃−1N
�ν

G
	

��R
NGAα...φ

γ ...μ
A...F
R...M − · · · − F̃−1N

�ν
G
	

��R
NM Aα...φ

γ ...μ
A...F
G...R

= [
∂N (Aα...φ

γ ...μ
A...F
G...M )

+ G
	

��A
NRAα...φ

γ ...μ
R...F
G...M + · · · + G

	
��F
NRAα...φ

γ ...μ
A...R
G...M

− G
	

��R
NGAα...φ

γ ...μ
A...F
R...M − · · · − G

	
��R
NM Aα...φ

γ ...μ
A...F
G...R

]
F̃−1N

�ν

+ 	��α
νρ Aρ...φ

γ ...μ
A...F
G...M + · · · + 	��φ

νρ Aα...ρ
γ ...μ

A...F
G...M

− 	��ρ
νγ Aα...φ

ρ...μ
A...F
G...M − · · · − 	��ρ

νμAα...φ
γ ...ρ

A...F
G...M

= (Aα...φ
γ ...μ

A...F
G...M );N F̃−1N

�ν

+ 	��α
νρ Aρ...φ

γ ...μ
A...F
G...M + · · · + 	��φ

νρ Aα...ρ
γ ...μ

A...F
G...M

− 	��ρ
νγ Aα...φ

ρ...μ
A...F
G...M − · · · − 	��ρ

νμAα...φ
γ ...ρ

A...F
G...M

= (Aα...φ
γ ...μ

A...F
G...M ):N F̃−1N

�ν .

(217)

Next consider a generic two-point tensor of the form A(x, t), with components Aα...φ
γ ...μ

a...f
g...m. The total covariant

derivative of A is computed analogously to (217), replacing referential coordinates X N with spatial coordinates
xn and F̃−1N

�ν with F̄n
�ν :

(Aα...φ
γ ...μ

a...f
g...m):ν = ∂ν(Aα...φ

γ ...μ
a...f
g...m)

+ 	��α
νρ Aρ...φ

γ ...μ
a...f
g...m + · · · + 	��φ

νρ Aα...ρ
γ ...μ

a...f
g...m

− 	��ρ
νγ Aα...φ

ρ...μ
a...f
g...m − · · · − 	��ρ

νμAα...φ
γ ...ρ

a...f
g...m

+ F̄n
�ν

g

	
��a
nr Aα...φ

γ ...μ
r...f
g...m + · · · + F̄n

�ν
g

	
��f
nr Aα...φ

γ ...μ
a...r
g...m

− F̄n
�ν

g

	
��r
ngAα...φ

γ ...μ
a...f
r...m − · · · − F̄n

�ν
g

	
��r
nmAα...φ

γ ...μ
a...f
g...r

= [
∂n(Aα...φ

γ ...μ
a...f
g...m)

+ g

	
��a
nr Aα...φ

γ ...μ
r...f
g...m + · · · + g

	
��f
nr Aα...φ

γ ...μ
a...r
g...m

− g

	
��r
ngAα...φ

γ ...μ
a...f
r...m − · · · − g

	
��r
nmAα...φ

γ ...μ
a...g
g...r

]
F̄n

�ν

+ 	��α
νρ Aρ...φ

γ ...μ
a...f
g...m + · · · + 	��φ

νρ Aα...ρ
γ ...μ

a...f
g...m

− 	��ρ
νγ Aα...φ

ρ...μ
a...f
g...m − · · · − 	��ρ

νμAα...φ
γ ...ρ

a...f
g...m

(218)
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= (Aα...φ
γ ...μ

a...f
g...m);nF̄n

�ν

+ 	��α
νρ Aρ...φ

γ ...μ
a...f
g...m + · · · + 	��φ

νρ Aα...ρ
γ ...μ

a...f
g...m

− 	��ρ
νγ Aα...φ

ρ...μ
a...f
g...m − · · · − 	��ρ

νμAα...φ
γ ...ρ

a...f
g...m

= (Aα...φ
γ ...μ

a...f
g...m):nF̄n

�ν .

For example, letting A(X , t) = F̃(X , t) = F̃α
�Ag̃α ⊗ GA, the material gradient is computed using (217) as

G∇ F̃ = ∂BF̃ ⊗ GB =
(
∂BF̃α

�A + 	��α
βχ F̃χ

�AF̃β
�B − G

	
��C
BA F̃α

�C
)

g̃α ⊗ GA ⊗ GB = F̃α
�A:Bg̃α ⊗ GA ⊗ GB. (219)

Note that unlike G∇F in the first expression of (89), skew covariant components of G∇ F̃ do not necessarily vanish:

F̃α
�[A:B] = ∂[BF̃α

�A] + 	��α
βχ F̃β

�[BF̃χ

�A] − G
	

��C
[BA]F̃

α
�C = ∂[BF̃α

�A] + 	��α
[βχ ]F̃

β
�BF̃χ

�A. (220)

From (220), the material gradient G∇ F̃ is generally symmetric in covariant indices only when both (108) holds

and symmetric connection coefficients 	��α
βχ = 	��α

(βχ ) are prescribed on B̃. As an example of (218), letting

A(x, t) = F̄−1(x, t) = F̄−1α
�ag̃α ⊗ ga, the spatial gradient is computed as

g

∇ (F̄−1) = ∂bF̄−1 ⊗ gb =
(
∂bF̄−1α

�a + 	��α
βχ F̄−1χ

�aF̄−1β

�b − g

	
��c
baF̄−1α

�c
)

g̃α ⊗ ga ⊗ gb = F̄−1α
�a:bg̃α ⊗ ga ⊗ gb. (221)

Skew covariant components of g

∇ (F̄−1) do not necessarily vanish:

F̄−1α
�[a:b] = ∂[bF̄−1α

�a] + 	��α
βχ F̄−1β

�[bF̄−1χ

�a] − g

	
��c
[ba]F̄

−1α
�c = ∂[bF̄−1α

�a] + 	��α
[βχ ]F̄

−1β

�bF̄−1χ
�a. (222)

From (222), the spatial gradient g

∇ (F̄−1) is generally symmetric in covariant indices only when both (112) holds

and symmetric connection coefficients 	��α
βχ = 	��α

(βχ ) are prescribed on B̃.
Finally, consider a tensor field of order three or higher, with components referred to all three configurations

B̃, B, and B0, written Aα...φ
γ ...μ

a...f
g...m

A...F
G...M . By extension, the total covariant derivative of field A is

(Aα...φ
γ ...μ

a...f
g...m

A...F
G...M ):ν = ∂ν(Aα...φ

γ ...μ
a...f
g...m

A...F
G...M )

+ 	��α
νρ Aρ...φ

γ ...μ
a...f
g...m

A...F
G...M + · · · + 	��φ

νρ Aα...ρ
γ ...μ

a...f
g...m

A...F
G...M

− 	��ρ
νγ Aα...φ

ρ...μ
a...f
g...m

A...F
G...M − · · · − 	��ρ

νμAα...φ
γ ...ρ

a...f
g...m

A...F
G...M

+ F̄n
�ν

g

	
��a
nr Aα...φ

γ ...μ
r...f
g...m

A...F
G...M + · · · + F̄n

�ν
g

	
��f
nr Aα...φ

γ ...μ
A...r
g...m

A...F
G...M

− F̄n
�ν

g

	
��r
ngAα...φ

γ ...μ
a...f
r...m

A...F
G...M − · · · − F̄n

�ν
g

	
��r
nmAα...φ

γ ...μ
a...f
g...r

A...F
G...M

+ F̃−1N
�ν

G
	

��A
NRAα...φ

γ ...μ
a...f
g...m

R...F
G...M + · · · + F̃−1N

�ν
G
	

��F
NRAα...φ

γ ...μ
a...f
g...m

A...R
G...M

− F̃−1N
�ν

G
	

��R
NGAα...φ

γ ...μ
a...f
g...m

A...F
R...M − · · · − F̃−1N

�ν
G
	

��R
NM Aα...φ

γ ...μ
a...f
g...m

A...F
G...R

= (Aα...φ
γ ...μ

a...f
g...m

A...F
G...M ):nF̄n

�ν

= (Aα...φ
γ ...μ

a...f
g...m

A...F
G...M ):N F̃−1N

�ν .

(223)

Consider a differential line element dX in the reference configuration. Such an element is mapped to its
representation in the intermediate configuration dx̃ analogously to (86) via the Taylor series [14]

dx̃α(X ) = (F̃α
�A)

∣∣∣
X

dX A + 1

2!
(F̃α

�A:B)
∣∣∣
X

dX A dX B + 1

3!
(F̃α

�A:BC)
∣∣∣
X

dX A dX B dX C + · · · , (224)
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where components of the total covariant derivative of F̃ are given in (219), and components of F̃α
�A:BC can be

obtained through iteration of (217). Similarly, consider a differential line element dx in the current configuration.
Such an element is mapped to its representation in the intermediate configuration dx̃ via

dx̃α(x) = (F̄−1α
�a)

∣∣∣
x

dxa + 1

2!
(F̄−1α

�a:b)
∣∣∣
x

dxa dxb + 1

3!
(F̄−1α

�a:bc)
∣∣∣
x

dxa dxb dxc + · · · , (225)

where components of the total covariant derivative of F̄−1 are given in (221), and components of F̄−1α
�a:bc can be

obtained through iteration of (218). To first order in dX and dx, and using (90) and (100), a standard assumption
is

dx̃ = F̃ dX = F̄−1F dX = F̄−1 dx. (226)

3.2.4. Divergence, curl, and Laplacian. Definitions that follow correspond to anholonomic space B̃, for which (179)–
(183) apply for covariant and partial differentiation. The divergence of a contravariant vector field V = Vαg̃α

is
〈∇, V〉 = tr (∇V) = 〈∂αV, g̃α〉 = ∇αVα = ∂αVα + 	��α

αβ Vβ . (227)

Note that the analog of the final equality in (66) does not necessarily apply here, since (52) may not hold for
connection coefficients on B̃ (i.e. 	��α

βχ are not necessarily Levi-Civita connection coefficients). The vector cross
product × obeys, for two vectors V and W and two covectors ααα and βββ,

V × W = εαβχVβWχ g̃α, ααα × βββ = εαβχαββχ g̃α. (228)

The curl of a covariant vector field ααα = ααg̃α is then defined as

∇ × ααα = g̃α × ∂α(αβ g̃β) = g̃α × g̃β∇ααβ = εαβχ∇ααβ g̃χ = εαβχ∇βαχ g̃α. (229)

A relationship like the final equality in (68) does not necessarily hold here, since coefficients 	��α
βχ are possibly

non-symmetric. The Laplacian of a scalar field f is, from the symmetry of inverse metric g̃αβ ,

∇2f = g̃αβ∇α∇β f = g̃αβ∇β∇αf = g̃αβ∇β(∂αf ) = g̃αβ∇α(∂β f ). (230)

An identity such as the third equality in (69) does not necessarily apply here. Unlike (70), the divergence of the
curl of a (co)vector field does not necessarily vanish in an anholonomic space:

〈∇, ∇ × ααα〉 = ∇α(εαβχ∇βαχ ) = ∇α[(1/
√

g̃)]eαβχ∇βαχ − 1

2
√

g̃
eαβχ [R���δ

αβχαδ + 2T ��δ
αβ∇δαχ ]. (231)

Identity (189) has been used. Similarly, from (188), the curl of the gradient of a scalar field may be non-zero in
anholonomic coordinates:

∇ × ∇f = εαβχ (∇β∇χ f )g̃α = εαβχ (T ��γ
χβ ∂γ f )g̃α. (232)

Identities (231) and (232) are now examined for the four particular sets of connection coefficients 	��α
βχ

defined in Section 3.2.2.
When configuration B̃ is a Euclidean space and (190) defines the connection coefficients, then the right-hand

sides of (231) and (232) are identically zero.
When (196) defines the connection coefficients, i.e. when identical (possibly curvilinear) coordinate systems

are used in reference and intermediate configurations, then (231) and (232) become

〈∇, ∇ × ααα〉 = 1√
G

eαβχ [δC
χ δδ

DF̃−1A
�[αF̃−1B

�β]∂A(G
	

��D
BC)αδ − (δδ

D
G
	

��D
AB F̃−1A

�[αδ
B
β] + F̃−1A

�[αF̃−1B
�β]∂AF̃δ

�B)

× F̃−1D
�δ(∂Dαχ − δε

EδC
χ

G
	

��E
DCαε)],

(233)

∇ × ∇f = − 1√
G

eαβχ [(δγ

A
G
	

��A
BCF̃−1B

�[βδC
χ ] + F̃−1A

�[β F̃−1B
�χ ]∂AF̃γ

�B)F̃−1E
�γ ∂Ef ]δF

α GF . (234)
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Definitions (198) and (199) have been used for torsion and curvature. Recall that neither need be zero even if F̃
is integrable. Vanishing of the covariant derivative of g̃ = det(g̃αβ) follows from (200).

Analogously, when (206) defines the connection coefficients, i.e. when identical (possibly curvilinear)
coordinate systems are used in current and intermediate configurations, then (231) and (232) become

〈∇, ∇ × ααα〉 = 1√
g

eαβχ [δc
χδδ

dF̄a
�[αF̄b

�β]∂a(g

	
��d
bc )αδ − (δδ

d
g

	
��d
ab F̄a

�[αδ
b
β] + F̄a

�[αF̄b
�β]∂aF̄−1δ

�b)

× F̄d
�δ(∂dαχ − δε

eδ
c
χ

g

	
��e
dc αε)],

(235)

∇ × ∇f = − 1√
g

eαβχ [(δγ
a

g

	
��a
bc F̄b

�[βδc
χ ] + F̄a

�[β F̄b
�χ ]∂aF̄−1γ

�b)F̄e
�γ ∂ef ]δf

αgf . (236)

Definitions (208) and (209) have been used for torsion and curvature. Recall that neither need be zero even if
F̄−1 is integrable. Vanishing of the covariant derivative of g̃ = det(g̃αβ) follows from (210).

Finally, consider the case when (214) defines the connection coefficients, i.e. when a Cartesian system is
used in the intermediate configuration, such that 	��α

βχ = 0 identically. In that case, (231) and (232) become,
respectively,

〈∇, ∇ × ααα〉 = ∇α(εαβχ∇βαχ ) = eαβχ∇α(∇βαχ ) = eαβχ∂[α(∂β]αχ ) = eαβχκ ��δ
βα∂δαχ , (237)

∇ × ∇f = εαβχ (∇β∇χ f )g̃α = eαβχ [∂[β(∂χ ]f )]eα = eαβχ [κ ��δ
χβ∂δf ]eα. (238)

Thus, even if intermediate connection coefficients vanish, the divergence of the curl and the curl of the gradient
need not be identically zero in anholonomic coordinates.

3.3. Anholonomic Jacobian determinants

3.3.1. Jacobian determinant of F̃. Jacobian determinant J̃ provides the relationship between differential vol-
ume elements in reference and intermediate configurations. Differential volume element in the intermediate
configuration (dṼ ) is

J̃ dV = dṼ =
√

g̃ dx̃1 dx̃2 dx̃3 ⊂ B̃. (239)

The Jacobian determinant J̃ [F̃(X , t), g̃, G(X )] is [14]

J̃ = 1

6
εABCεαβχ F̃α

�AF̃β
�BF̃χ

�C = 1

6

√
g̃/G eABCeαβχ F̃α

�AF̃β
�BF̃χ

�C =
√

g̃/G det F̃ =
√

det (g̃αβ)

det (GAB)
det (F̃α

�A). (240)

From similar arguments, inverse Jacobian determinant J̃−1[F̃−1(x, t), G(X ), g̃] = 1/J̃ is

J̃−1 = 1

6
εαβχεABC F̃−1A

�αF̃−1B
�β F̃−1C

�χ =
√

G/g̃ det F̃−1 =
√

det (GAB)/ det (g̃αβ) det (F̃−1A
�α). (241)

When the mapping is restricted to rigid translation (or to no motion at all), then F̃α
�A = gα

A [the shifter of (129)],
F̃ = gα

Ag̃α ⊗ GA, and J̃ = √
g̃/G det(gα

A) = 1 follows from (133). From identity (51), it follows that

∂ J̃

∂F̃α
�A

= J̃ F̃−1A
�α,

∂ J̃−1

∂F̃−1A
�α

= J̃−1F̃α
�A. (242)

Taking the divergence of the first of (242) results in [14]

(J̃ F̃−1A
�α):A = 1

2
εαβχεABC

(
F̃β

�BF̃χ

�C:A + F̃β

�B:AF̃χ

�C
)

= εαβχεABCF̃β

�AF̃χ

�[B:C]. (243)
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Recall from (220) that material gradient G∇ F̃ is generally symmetric in covariant indices only when both (108)

holds and symmetric coefficients 	��α
βχ = 	��α

(βχ ) are prescribed on B̃. Thus, unless such symmetry conditions

hold, the analog of Piola’s identity (97) does not necessarily apply for the divergence of J̃ F̃−1A
�α.

Let the vector field A = AAGA be the Piola transform of ã = ãαg̃α:

AA = J̃ F̃−1A
�αãα. (244)

Taking the divergence of (244) and applying the product rule for covariant differentiation with definition (217)
results in

AA
; A = AA

:A = (J̃ F̃−1A
�α):Aãα + J̃ F̃−1A

�αãα
:A = J̃ [J̃−1(J̃ F̃−1A

�α):Aãα + ãα
:α] = J̃ ∇̃αãα, (245)

where the anholonomic covariant derivative is defined as [14, 19]

∇̃α(·) = (·):AF̃−1A
�α + (·)J̃−1(J̃ F̃−1A

�α):A = (·):α + (·)J̃−1εαβχεABCF̃β

�AF̃χ

�B:C. (246)

The second term on the right-hand side of (246) vanishes when the right-hand side of (243) vanishes, in which
case (245) becomes similar to (99).

As a second example, consider the following Piola transformation between contravariant second-order tensor
A = AABGA ⊗ GB and ã = ãAαGA ⊗ g̃α:

AAB = J̃ F̃−1B
�αãAα. (247)

Divergence on the second leg of A is computed as

AAB
; B = AAB

:B = (J̃ F̃−1B
�α):BãAα + J̃ F̃−1B

�αãAα
:B = J̃ ∇̃αãAα

= J̃ (∂αãAα + 	��α
αβ ãAβ + G

	
��A
BCF̃−1B

�αãCα) + εαβχεDBCãAαF̃β
�D(∂CF̃χ

�B + 	
��χ
δε F̃δ

�CF̃ε
�B).

(248)

Physically, the quantity J̃ is associated with volume changes resulting from mechanisms associated with
mapping F̃. When F̃ represents plastic deformation from dislocation glide [3, 43], or shear associated with
twinning [19, 20], then F̃ is isochoric and J̃ = 1. When F̃ represents thermal deformation [15], and when such
thermal deformation is isotropic (e.g. for cubic crystals), then F̃ = J̃1/31 = J̃1/3gα

�Ag̃α ⊗ GA, where J̃ depends
on temperature [25]. Mapping F̃ exhibits a similar spherical form when it represents isotropic deformation from
voids [18] or point defects [17], in which case J̃ depends on the volume fraction of such defects. When F̃ depicts
growth of biomaterials, then J̃ reflects both density changes and mass changes, with the former often negligible
in the context of tissue mechanics [25].

3.3.2. Jacobian determinant of F̄. Definitions and arguments of the previous section can be repeated for the Jacobian
determinant of F̄. Differential volume elements in spatial and intermediate configurations are related by

dv = J̄ dṼ , (249)

where the Jacobian determinant J̄ [F̄(X , t), g(x), g̃] is

J̄ = 1

6
εabcε

αβχ F̄a
�αF̄b

�β F̄c
�χ =

√
g/g̃ det F̄ =

√
det (gab)/ det (g̃αβ) det (F̄a

�α). (250)

From similar arguments, inverse Jacobian determinant J̄−1[F̄−1(x, t), g̃, g(x)] = 1/J̄ is

J̄−1 = 1

6
εαβχεabc F̄−1α

�aF̄−1β

�bF̄−1χ
�c =

√
g̃/g det F̄−1 =

√
det (g̃αβ)/ det (gab) det (F̄−1α

�a). (251)

Note that products of Jacobian determinants and their inverses obey

J = J̄ J̃ , J−1 = J̃−1J̄−1. (252)
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From identity (51), it follows that, analogously to (242),

∂ J̄

∂F̄a
�α

= J̄ F̄−1α
�a,

∂ J̄−1

∂F̄−1α
�a

= J̄−1F̄a
�α. (253)

Taking the divergence of the first of (253) results in

(J̄−1F̄a
�α):a = 1

2
εαβχεabc

(
F̄−1β

�bF̄−1χ

�c:a + F̄−1β

�b:aF̄−1χ
�c
)

= εαβχεabcF̄−1β
�aF̄−1χ

�[b:c]. (254)

Recall from (222) that spatial gradient g

∇ (F̄−1) is generally symmetric in covariant indices only when both

(112) holds and symmetric connection coefficients 	��α
βχ = 	��α

(βχ ) are prescribed on B̃. Only in such cases does

the divergence of J̄−1F̄a
�α generally vanish, such that an identity akin to (96) holds.

Let the vector field A = Aaga be the Piola transform of ã = ãαg̃α:

Aa = J̄−1F̄a
�αãα. (255)

Taking the divergence of (255) and applying the product rule for covariant differentiation with (218),

Aa
; a = Aa

:a = (J̄−1F̄a
�α):aãα + J̄−1F̄a

�αãα
:a = J̄−1[J̄ (J̄−1F̄a

�α):aãα + ãα
:α] = J̄−1 ∇̄αãα, (256)

where the anholonomic covariant derivative is defined analogously to (246):

∇̄α(·) = (·):aF̄a
�α + (·)J̄ (J̄−1F̄a

�α):a = (·):α + (·)J̄εαβχεabcF̄−1β
�aF̄−1χ

�b:c. (257)

The second term on the right-hand side of (257) vanishes when the right-hand side of (254) vanishes, in which
case (256) becomes similar to (99).

As a second example, consider the following Piola transformation between contravariant second-order tensor
A = Aabga ⊗ gb and ã = ãaαga ⊗ g̃α:

Aab = J̄−1F̄b
�αãaα. (258)

Divergence on the second leg of A is computed similarly to (248):

Aab
; b = Aab

:b = (J̄−1F̄b
�α):bãaα + J̄−1F̄b

�αãaα
:b = J̄−1 ∇̄αãaα

= J̄−1(∂αãaα + 	��α
αβ ãaβ + g

	
��a
bc F̄b

�αãcα) + εαβχεdbcãaαF̄−1β

�d(∂cF̄
−1χ

�b + 	
��χ
δε F̄−1δ

�cF̄
−1ε

�b).
(259)

From (79) and (96), it follows that covariant derivative operations in (246) and (257) are equivalent:

∇̄α(·) = (·):aF̄a
�α + (·)J̄ (J̄−1F̄a

�α):a = (·):AF̄a
�αF−1A

�a + (·)J̄ (J−1J̃Fa
�AF̃−1A

�α):a = ∇̃α(·). (260)

When F̄ physically represents elastic deformation, then J̄ quantifies elastic volume changes typically related
to pressure changes. The physical importance of identities associated with Piola transformations such as those
above will become clear in the context of the balance of linear momentum discussed in Section 4. Derivations
of Piola transformations and related identities in anholonomic configurations have been given elsewhere in
coordinate-free notation [6, 40].

3.4. Dislocation theory

Developments of Sections 3.1–3.3 have known and immediate relevance in the context of continuum dislocation
theory. Connection coefficients referred to referential and spatial coordinate systems are introduced as

	̃��A
BC = F̃−1A

�α∂BF̃α
�C = −F̃α

�CF̃β
�B∂β F̃−1A

�α, 	̄��a
bc = F̄a

�α∂bF̄−1α
�c = −F̄−1α

�cF̄
−1β

�B∂β F̄a
�α. (261)

Torsion tensors of these coefficients are related to the equivalent anholonomic object of (176) and (184) as
follows:

T̃ ��A
BC = 	̃��A

[BC] = F̃−1A
�αF̃β

�BF̃χ

�Cκ̃ ��α
βχ , T̄ ��a

bc = 	̄��a
[bc] = F̄a

�αF̄−1β

�bF̄−1χ
�cκ̄

��α
βχ . (262)
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Riemann–Christoffel curvature tensors formed from connections in (261), which are said to be integrable, van-
ish identically at all points X ∈ B0 or x ∈ B (see [27]). Let C be a closed curve enclosing simply connected area
S in configuration B0, and let c̃ be the image of this curve in B̃. Assigning constant basis vectors g̃α over C and
S, a measure of incompatibility associated with F̃ in domain S is obtained using (226) and Stokes’s theorem:∮

c̃
dx̃α =

∮
C

F̃α
�A dX A =

∫
S
εABCF̃α

�A;CNB dS =
∫

S
εABC∂AF̃α

�BNC dS =
∫

S
α̃αCNC dS, (263)

where NC(X ) are components of the unit normal to S. Analogously, letting c be a closed curve enclosing simply
connected area s in the current configuration,∮

c̃
dx̃α =

∮
c

F̄−1α
�a dxa =

∫
s
εabcF̄−1α

�a;cnb ds =
∫

s
εabc∂aF̄−1α

�bnc ds =
∫

s
ᾱαcnc ds, (264)

with nc(x) the unit normal to s. Let F̄ represent elastic deformation, and let F̃ represent plastic deformation from
dislocation motion. Dislocation density tensors α̃αA and ᾱαa are related to torsion tensors of (262) as

α̃αC = εABC∂AF̃α
�B = εABCF̃α

�DT̃ ��D
BC , ᾱαc = εabc∂aF̄−1α

�b = εabcF̄−1α
�dT̄ ��d

bc . (265)

It follows from identities κ̃ ��α
βχ = κ̄ ��α

βχ of (176), (252), (262), and Jεabc = εABCFa
�AFb

�BFc
�C that dislocation density

tensors are related by
J̃−1F̃α

�Aα̃βA = J̄ F̄−1α
�aᾱ

βa. (266)

Integrals (263) and (264) can be interpreted as total Burgers vectors of all dislocation lines piercing areas S and
s, respectively [3]. Many other dislocation density tensors can be derived by mapping those in (265) to various
configurations [6, 32, 40, 42]; sign conventions can also vary among definitions of the total Burgers vector
and dislocation density tensor. A relationship between torsion and dislocations has also been described in the
context of gauge theory [44]. In constitutive theories of crystalline solids of the gradient type, geometrically
necessary dislocation density tensors such as those listed here may directly affect stored energy [42, 43, 45] and
strain hardening [9, 42, 43, 45].

4. Balance of linear momentum
For a hyperelastic–plastic material with uniform properties, it is shown that the static local balance of lin-
ear momentum, when mapped to the intermediate configuration, can be written directly in terms of F̄ and its
covariant derivatives. Acceleration and body forces are excluded; these can be incorporated into subsequent
developments without difficulty.

4.1. Local momentum balance

Let σσσ (x, t) = σ abga ⊗gb denote the symmetric Cauchy stress referred to configuration B. In the absence of body
forces and acceleration, the local balance of linear momentum is, in possibly curvilinear spatial coordinates xa,
[37–39]

σ ab
;b = 0, (267)

recalling that the subscripted semicolon denotes covariant differentiation as in (55). Defining the Piola transform
with respect F̄ to similarly to (258),

σ ab = J̄−1F̄b
�αPaα, Paα = J̄ F̄−1α

�bσ
ab, (268)

and appealing to (259), momentum balance (267) can be written, upon multiplication by J̄ , as

0 = J̄σ ab
; b = ∇̄αPaα

= ∂αPaα + 	��α
αβ Paβ + g

	
��a
bc F̄b

�αPcα + J̄εαβχεdbcPaαF̄−1β

�d(∂cF̄
−1χ

�b + 	
��χ
δε F̄−1δ

�cF̄
−1ε

�b).
(269)

The first term in parentheses on the right-hand side of (269) is related to a dislocation density in (265) via
εbcd∂bF̄−1χ

�c = ᾱχd. While the balance of linear momentum in anholonomic space has been considered elsewhere
[6, 7, 23, 40], several particular forms derived in curvilinear coordinates in what follows are believed to be new.

 at US ARMY RESEARCH LABORATORY on September 17, 2012mms.sagepub.comDownloaded from 



730 Mathematics and Mechanics of Solids 17(7)

4.2. Hyperelastic–plastic material

Consider a crystalline solid. Let F̄ physically represent elastic lattice deformation, and let F̃ physically repre-
sent plastic deformation, e.g. resulting from glide of crystal dislocations. Let � denote the strain energy per
unit volume of material in intermediate configuration B̃, which is assumed to be a function of the following
arguments:

� = �(C̄, g̃) = �[C̄(F̄, g), g̃], (270)

where g denotes the spatial metric tensor of (11) with components gab(x), g̃ denotes the intermediate metric
tensor of (122) with components g̃αβ , and where the symmetric elastic deformation tensor

C̄ = C̄αβ g̃α ⊗ g̃β = F̄a
�αgabF̄b

�β g̃α ⊗ g̃β , C̄αβ = F̄a
�αgabF̄b

�β = C̄βα. (271)

The dependence of strain energy on other terms (e.g. internal state variables representing contributions from lat-
tice defects, or X representing heterogeneous material properties) can be incorporated without severely affecting
subsequent arguments. Furthermore, strain energy per unit reference volume J̃ � could be used alternatively
without conceptual difficulties; in the usual case of isochoric plastic deformation from slip, the distinction is
irrelevant because J̃ = 1. For a hyperelastic response, the stress obeys

P�α
a = gabPbα = ∂�

∂F̄a
�α

= ∂�

∂C̄βχ

∂C̄βχ

∂F̄a
�α

= 2gab
∂�

∂C̄αβ

F̄b
�β , (272)

where the chain rule and the following identity have been used:

∂C̄αβ

∂F̄a
�χ

= 2gabδ
χ

(αF̄b
�β). (273)

Constitutive equation (272), in conjunction with definition (268), is standard for crystalline solids and can
be derived using thermodynamic arguments [14, 19, 25, 33]. Functional forms of � for nonlinear elastic-
ity of anisotropic single crystals belonging to various crystal classes are available in the literature [14, 32].
Usually, dependence on g̃ is not written explicitly; however, as will be demonstrated shortly, inverse met-
ric components g̃αβ are needed for construction of scalar invariants of covariant deformation tensor C̄αβ

entering the strain energy function, e.g. the trace trC̄ = C̄α
�α = C̄αβ g̃αβ and Jacobian determinant J̄ =

det(F̄a
�α)[det(gab) det(g̃αβ)]1/2 = [det(C̄α

�β)]1/2.
For illustrative purposes, consider an isotropic (poly)crystalline solid whose nonlinear hyperelastic response

can be described via the neo-Hookean strain energy potential [46]:

� = λ

2
[trC̄ + (ln J̄ )2 − 3] − μ ln J̄ = λ

2
(C̄αβ g̃αβ − 3) + ln J̄

(
λ

2
ln J̄ − μ

)
, (274)

where λ and μ are elastic constants. Using (253), the stress of (272) for a neo-Hookean material described by
(274) is

Paα = μ(F̄aα − F̄−1αa) + λF̄−1αa ln J̄ = μ(F̄a
�β g̃αβ − F̄−1α

�bgab) + λF̄−1α
�bgab ln J̄ . (275)

The partial derivative of the stress entering (269) is then

∂αPaα = F̄b
�α∂bPaα = μF̄b

�α∂bF̄aα − (μ − λ ln J̄ )F̄b
�α∂bF̄−1αa + λJ̄−1gab∂bJ̄ . (276)

The second and third terms on the right-hand side of (276) can be written in terms of the partial derivative of the
elastic deformation gradient rather than its inverse and determinant upon use of the chain rule and the identities

∂F̄−1α
�a

∂F̄b
�β

= −F̄−1α
�bF̄−1β

�a, ∂aJ̄ = ∂ J̄

∂F̄b
�β

∂aF̄b
�β + ∂ J̄

∂(g/g̃)
∂a(g/g̃) = J̄ F̄−1β

�b∂aF̄b
�β + J̄ ∂a[ln(g/g̃)], (277)

leading to

∂αPaα = μF̄b
�α∂bF̄aα + (μ − λ ln J̄ )(F̄−1�a

α ∂bF̄bα + F̄−1αaF̄bβ∂bg̃αβ − ∂bgab) + λgab{F̄−1α
�c∂bF̄c

�α + ∂b[ln(g/g̃)]}.
(278)
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With stress components computed generically using (272) or specifically (e.g. (275)), all that remains in
(269) is specification of intermediate connection coefficients 	��α

βχ , which can be defined as discussed in Section
3.2.2. Explicit forms are considered in what follows.

4.2.1. Holonomic elastic deformation. When (108) applies, such that B̃ can be regarded as a Euclidean space, then
(190) can be used to define the intermediate connection coefficients. The right-most term of (269) vanishes from
the integrability of F̄−1α

�a = ∂ax̃α and the symmetry of 	��α
βχ in (190), leaving

∂αPaα + 	��α
αβ Paβ + g

	
��a
bc F̄b

�αPcα = 0. (279)

4.2.2. Coincident referential and intermediate coordinate frames. Next consider the case when (109) may apply, such
that single-valued coordinates x̃α(X , t) continuously differentiable with respect to X A may not exist in B̃. Let
identical coordinate systems and metric tensors be assigned at to each material particle X in configurations B0

and B̃ [36], such that the appropriate connection coefficients are given by (196). In this case, linear momentum
balance (269) becomes

∂αPaα + δα
AδC

β
G
	

��A
BCF̃−1B

�αPaβ + g

	
��a
bc F̄b

�αPcα

+ (det F̄)eαβχedbcPaαF̄−1β

�d(∂cF̄
−1χ

�b + δ
χ

A δC
ε

G
	

��A
BCF−1B

�cF̄
−1ε

�b) = 0.
(280)

4.2.3. Coincident spatial and intermediate coordinate frames. Now consider the case when (113) may apply, such that
single-valued coordinates x̃α(x, t) continuously differentiable with respect to xa may not exist in B̃. Identical
coordinate systems and metric tensors are assigned to each spatial point x in configurations B and B̃, so that
appropriate connection coefficients on B̃ are given by (206) (see also the Appendix for a specific example of
cylindrical coordinates). Linear momentum balance (269) becomes

∂αPaα + g

	
��a
bc F̄b

�α(δα
a δc

βPaβ + Pcα)

+ (det F̄)eαβχedbcPaαF̄−1β

�d(∂cF̄
−1χ

�b + δχ
e δh

ε

g

	
��e
ch F̄−1ε

�b) = 0.
(281)

Choice (206) appears favorable over (196) in the context of the balance of linear momentum because (281)
involves only one set of connection coefficients and one deformation map (F̄), in contrast to (280) which
involves two different sets of connection coefficients and both deformation maps F̄ and F̃. When (278) applies,
for example, momentum balance (281) can be expressed completely in terms of the elastic constants, elas-
tic deformation F̄ (including its gradient, inverse, and determinant), spatial metric g, and spatial connection
coefficients g

	
��a
bc , the latter which are obtained from partial derivatives of g through (53).

4.2.4. Cartesian intermediate coordinates. Finally consider the case wherein Cartesian basis vectors are used on B̃,
so that (214) holds meaning 	��α

βχ = 0. The linear momentum balance (269) reduces to

∂αPaα + g

	
��a
bc F̄b

�αPcα + (det F̄)eαβχedbcPaαF̄−1β

�d∂cF̄
−1χ

�b = 0. (282)

When Cartesian spatial coordinates are used and when F̄−1 is integrable as in (279), then (282) reduces to
∂αPaα = 0.

5. Conclusions
The possibly anholonomic intermediate configuration of a deformable body has been examined from the per-
spectives of tensor calculus and differential geometry. Various choices of extrinsic coordinate systems for the
intermediate configuration have been considered; corresponding metric tensors, connection coefficients, torsion,
and curvature have been derived. Partial and total covariant differentiation with respect to anholonomic coordi-
nates have been defined. It has been shown that when the same curvilinear coordinate systems are prescribed

 at US ARMY RESEARCH LABORATORY on September 17, 2012mms.sagepub.comDownloaded from 



732 Mathematics and Mechanics of Solids 17(7)

on intermediate and Euclidean reference or current configurations, the torsion and curvature of the connection
coefficients in the intermediate configuration, which are generally time dependent, need not vanish. Conven-
tional identities that hold in reference and current configurations such as vanishing divergence of the curl of
a vector field and vanishing curl of the gradient of a scalar field do not necessarily apply in the intermediate
configuration. The balance of linear momentum has been derived for a hyperelastic–plastic material in general
curvilinear coordinates. For neo-Hookean elasticity, the choice of coincident spatial and intermediate coordinate
systems enables the stress divergence to be expressed completely in terms of elastic constants, spatial gradients
of elastic deformation, and the spatial metric tensor and its spatial derivatives.
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Appendix: Anholonomic cylindrical coordinates

As an illustrative example of curvilinear intermediate (anholonomic) coordinates, consider cylindrical spatial
coordinates mapped to the intermediate configuration. Because cylindrical spatial coordinates exhibit rela-
tively simple forms for metric tensors and connection coefficients, corresponding quantities mapped to the
intermediate configuration can be derived by inspection.

In this example, (146)–(151) apply for basis vectors and metric tensors. Since the angular coordinate in cur-
rent configuration B is labeled θ , overbars are used here to denote particular (anholonomic) coordinates referred
to the intermediate configuration B̃. Specifically, holonomic coordinates on B are denoted by the usual (r, θ , z),
while anholonomic coordinates on B̃ are denoted by (r̄, θ̄ , z̄). In what follows, indices (r, θ , z) and (r̄, θ̄ , z̄) refer
to specific coordinates and are exempt from the summation convention. Generic indices (a, b, c, d . . .) and
(α, β, χ , δ . . .) refer to free spatial and intermediate quantities, respectively, and are subject to summation over
repeated indices.

A.1. Spatial components

Quantities associated with the usual holonomic spatial coordinates are considered first [39]. In three spatial
dimensions, cylindrical coordinates are

(x1, x2, x3) → (r, θ , z), r ≥ 0, θ ∈ (−π , π ]. (283)
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The squared length of a differential line element dx is

dx · dx = (dr)2 + (r dθ )2 + (dz)2. (284)

The metric tensor and its inverse are

[gab] =
⎡
⎣grr grθ grz

gθr gθθ gθz

gzr gzθ gzz

⎤
⎦ =

⎡
⎣1 0 0

0 r2 0
0 0 1

⎤
⎦ , [gab] =

⎡
⎣grr grθ grz

gθr gθθ gθz

gzr gzθ gzz

⎤
⎦ =

⎡
⎣1 0 0

0 1/r2 0
0 0 1

⎤
⎦ . (285)

Determinants of the metric tensor and its inverse are

g = det(gab) = r2, g−1 = det(gab) = 1/r2. (286)

A differential volume element is
dv = √

g dx1 dx2 dx3 = r dr dθ dz. (287)

Connection coefficients from (53) are

g

	
��θ
rθ = g

	
��θ
θr = 1/r, g

	
��r
θθ = −r, g

	
��a
bc = 0 otherwise. (288)

It is remarked that connection coefficients (288) are symmetric in covariant indices (i.e. null torsion), and that
the Riemann–Christoffel curvature tensor formed from these coefficients vanishes. Let x denote the position
vector in Euclidean space. Natural basis vectors are

gr = ∂rx, gθ = ∂θx, gz = ∂zx. (289)

A.2. Intermediate components

Intermediate basis vectors, from (289) and (146), are

g̃r̄(x) = ∂rx, g̃θ̄ (x) = ∂θx, g̃z̄(x) = ∂zx. (290)

The metric tensor and its inverse, from (285) and (147), are

[g̃αβ] =
⎡
⎣1 0 0

0 r2 0
0 0 1

⎤
⎦ , [g̃αβ] =

⎡
⎣1 0 0

0 1/r2 0
0 0 1

⎤
⎦ . (291)

Determinants of the intermediate metric tensor and its inverse, from (286) and (149), are

g̃ = r2, g̃−1 = 1/r2. (292)

To second order in dx, from (226), the squared length of an intermediate line element is

dx̃ · dx̃ = (F̄−1α
�r dr + F̄−1α

�θ dθ + F̄−1α
�z dz)g̃αβ(F̄−1β

�r dr + F̄−1β

�θ dθ + F̄−1β
�z dz). (293)

An intermediate volume element is, from (151), (249), (251), and (287),

dṼ = (det F̄−1)r dr dθ dz. (294)

In the present example, definitions (206), (208), and (209) apply for connection coefficients, torsion, and cur-
vature referred to the intermediate configuration. From (288) and (206), anholonomic connection coefficients
consist of up to nine non-zero components:

	��θ̄
r̄θ̄

= F̄r
r̄/r, 	��θ̄

θ̄ θ̄
= F̄r

θ̄
/r, 	��θ̄

z̄θ̄
= F̄r

z̄/r; (295)

 at US ARMY RESEARCH LABORATORY on September 17, 2012mms.sagepub.comDownloaded from 



Clayton 735

	��θ̄
r̄r̄ = F̄θ

r̄ /r, 	��θ̄
θ̄ r̄

= F̄θ

θ̄
/r, 	��θ̄

z̄r̄ = F̄θ
z̄ /r; (296)

	��r̄
r̄θ̄ = −F̄θ

r̄ r, 	��r̄
θ̄ θ̄

= −F̄θ

θ̄
r, 	��r̄

z̄θ̄ = −F̄θ
z̄ r. (297)

Possibly non-zero skew covariant components of these coefficients are

	��θ̄
[r̄θ̄ ]

= 1

2r
(F̄r

r̄ − F̄θ

θ̄
), 	��θ̄

[z̄θ̄ ]
= 1

2r
F̄r

z̄ ; (298)

	��θ̄
[z̄r̄] = 1

2r
F̄θ

z̄ ; (299)

	��r̄
[r̄θ̄ ] = − r

2
F̄θ

r̄ , 	��r̄
[z̄θ̄ ] = − r

2
F̄θ

z̄ . (300)

Torsion can then be computed from (208), noting that the anholonomic object

κ̄ ��α
βχ = F̄a

�β F̄b
�χ∂[aF̄−1α

�b]. (301)

Spatial connection coefficients (288) have the following non-zero skew partial derivatives:

∂[r
g

	
��θ
θ ]r = − 1

2r2
, ∂[r

g

	
��r
θ ]θ = −1

2
. (302)

Therefore, possibly non-vanishing components of the anholonomic curvature (209) follow as

R���θ̄
βχ r̄ = 2

r2
F̄r

�[β F̄θ
�χ], R���r̄

βχθ̄
= 2F̄r

�[β F̄θ
�χ]. (303)

Written out completely with no free indices, (303) yields the components

R���θ̄
r̄θ̄ r̄

= 1

r2
(F̄r

�r̄F̄
θ

�θ̄ − F̄r
�θ̄ F̄θ

�r̄), R���θ̄
θ̄ z̄r̄

= 1

r2
(F̄r

�θ̄ F̄θ
�z̄ − F̄r

�z̄F̄
θ

�θ̄ ), R���θ̄
z̄r̄r̄ = 1

r2
(F̄r

�z̄F̄
θ
�r̄ − F̄r

�r̄F̄
θ
�z̄); (304)

R���r̄
r̄θ̄ θ̄

= F̄r
�r̄F̄

θ

�θ̄ − F̄r
�θ̄ F̄θ

�r̄, R���r̄
θ̄ z̄θ̄ = F̄r

�θ̄ F̄θ
�z̄ − F̄r

�z̄F̄
θ

�θ̄ , R���r̄
z̄r̄θ̄ = F̄r

�z̄F̄
θ
�r̄ − F̄r

�r̄F̄
θ
�z̄. (305)

Clearly, skew components of the connection (and, hence, the torsion) as well as the curvature need not vanish
even if the anholonomic object of (301) is identically zero.
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